南海北部中新世古气候分析

赵韶华, 王雅宁, 张尚锋, 朱锐, 徐恩泽, 易志凤, 巩高阳, 王玉瑶, 刘浩童. 南海北部中新世古气候分析——基于天文旋回的冷却事件响应[J]. 海洋地质前沿, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266
引用本文: 赵韶华, 王雅宁, 张尚锋, 朱锐, 徐恩泽, 易志凤, 巩高阳, 王玉瑶, 刘浩童. 南海北部中新世古气候分析——基于天文旋回的冷却事件响应[J]. 海洋地质前沿, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266
ZHAO Shaohua, WANG Yaning, ZHANG Shangfeng, ZHU Rui, XU Enze, YI Zhifeng, GONG Gaoyang, WANG Yuyao, LIU Haotong. Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles[J]. Marine Geology Frontiers, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266
Citation: ZHAO Shaohua, WANG Yaning, ZHANG Shangfeng, ZHU Rui, XU Enze, YI Zhifeng, GONG Gaoyang, WANG Yuyao, LIU Haotong. Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles[J]. Marine Geology Frontiers, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266

南海北部中新世古气候分析

  • 基金项目: “十三五”国家重大科技专项(2017ZX05032-002-002);国家自然科学基金(41472098)
详细信息
    作者简介: 赵韶华(1996—),女,在读硕士,主要从事应用沉积学方面的研究工作. E-mail:814538878@qq.com
    通讯作者: 王雅宁(1983—),男,博士,副教授,主要从事沉积储层、层序地层及勘探目标评价方面的研究工作. E-mail:156006285@qq.com
  • 中图分类号: P736.2;P539.2

Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles

More Information
  • 中国南海北部蕴藏着丰富的油气资源,分析该区域中新世古气候,对其油气资源开发有着极其重要的意义。综合运用Matlab软件频谱分析及滤波方法深入分析南海北部珠江口盆地惠陆低凸起中部A井1 949.12~2 020 m自然伽马测井数据(GR)的天文年代标尺,精确推测出对应时间段的古气候事件,并分析造成此事件的原因。研究结果显示,该GR数据序列的功率谱显示出68.8、16.99、7.81、3.74 m厚度的沉积旋回周期,其中,68.8 m和16.99 m厚度的沉积旋回分别对应405 ka的长偏心率周期信号和100 ka的短偏心率周期信号;7.81 m的沉积旋回对应46 ka的斜率周期信号;3.74 m的沉积旋回对应22 ka的岁差周期信号。由此表明,A井的沉积地层记录了天文轨道信号(偏心率、斜率、岁差)。根据建立的天文年代标尺确定整个韩江组地质年龄约为10.2~16.5 Ma,推测出14~15 Ma期间可能由于偏心率振幅降低发生了冷却事件。

  • 加载中
  • 图 1  深海氧、碳同位素曲线与新生代主要地质事件

    Figure 1. 

    图 2  珠江口盆地惠州凹陷构造位置及综合柱状图[17-18]

    Figure 2. 

    图 3  基于Matlab的流程图

    Figure 3. 

    图 4  珠江口盆地A井(1 249.12~2 020 m)自然伽马测井曲线fft频谱分析结果

    Figure 4. 

    图 5  A井韩江组深度域与时间域滤波结果

    Figure 5. 

    图 6  A井韩江组绝对天文年代标尺

    Figure 6. 

    图 7  A井韩江组有孔虫、浮游有孔虫丰度、氧碳同位素和滤波曲线对比

    Figure 7. 

  • [1]

    ZACHOS J,PAGANI M,SLOAN L,et al. Trends,rhythms,and aberrations in global climate 65 Ma to present.[J]. Science,2001,292(5517):686-693. doi: 10.1126/science.1059412

    [2]

    张立海, 刘凤民, 张业成. 青藏高原隆起对中国地质自然环境影响[C]//青藏高原地质过程与环境灾害效应文集. 中国地质学会, 中国地震学会, 2005.

    [3]

    薛莉,张世涛. 中国中新世地质事件、古气候对桦木属(桦木科)植物影响及其主要分布地层简述[J]. 中国水运,2019,19(4):122-123.

    [4]

    薛力园. 南海北部陆丰凹陷中新世古环境演化研究[D]. 北京: 中国地质大学(北京), 2019.

    [5]

    XING Y,UTESCHER T,JACQUES F M B,et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene:evidence from plant macrofossils[J]. Palaeogeography Palaeoclimatology Palaeoecology,2012,358/360:19-26. doi: 10.1016/j.palaeo.2012.07.011

    [6]

    刘欣雨, 张旗, 张成立, 等. 中新世全球重要事件及其意义: 数据挖掘的启示[J].科学通报, 2017, 62(15): 1645-1654.

    [7]

    李玲, 郑洪波, 赵良, 等. 中新世以来长江下游和黄土高原地区黏土矿物的时空变化及古气候意义[J]. 古地理学报, 2011, 13(3): 355-362.

    [8]

    李凤杰,王多云,郑希民,等. 测井曲线频谱分析在含煤地层沉积旋回研究中的应用[J]. 煤田地质与勘探,2003,31(6):14-18. doi: 10.3969/j.issn.1001-1986.2003.06.005

    [9]

    李新虎. 测井曲线拐点在测井层序地层分析中的应用研究[J]. 天然气地球科学,2006,17(6):815-819. doi: 10.3969/j.issn.1672-1926.2006.06.016

    [10]

    李凤杰,赵俊兴. 基于Matlab的测井曲线频谱分析及其在地质研究中的应用:以川东北地区二叠系长兴组为例[J]. 天然气地球科学,2007,18(4):531-534. doi: 10.3969/j.issn.1672-1926.2007.04.009

    [11]

    赵庆乐,张世红,王婷婷,等. 利用Matlab函数识别沉积物中的米兰柯维奇旋回信号[J]. 吉林大学学报(地球科学版),2010,40(5):1217-1220.

    [12]

    高迪,郭变青,邵龙义,等. 基于MATLAB的小波变换在沉积旋回研究中的应用[J]. 物探化探计算技术,2012,34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14

    [13]

    刘洋,吴怀春,张世红,等. 珠江口盆地珠一坳陷韩江组-万山组旋回地层学[J]. 地球科学:中国地质大学学报,2012,37(3):411-423.

    [14]

    秦国权. 珠江口盆地新生代地层问题讨论及综合柱状剖面图编制[J]. 中国海上油气(地质),2000,14(1):22-29.

    [15]

    范时清,廖健雄. 中国南海北部新生代古环境的变迁[J]. 广西科学院学报,2005,2(1):51-55. doi: 10.3969/j.issn.1002-7378.2005.01.012

    [16]

    邓宏文,郑文波. 珠江口盆地惠州凹陷古近系珠海组近海潮汐沉积特征[J]. 现代地质,2009,23(5):767-775. doi: 10.3969/j.issn.1000-8527.2009.05.001

    [17]

    曾智伟. 南海北部珠江口盆地古近纪源-汇系统耦合研究[D]. 武汉: 中国地质大学(武汉), 2020.

    [18]

    王福国,梅廉夫,施和生,等. 珠江口盆地珠一坳陷古近系构造样式分析[J]. 大地构造与成矿学,2008,32(4):448-454. doi: 10.3969/j.issn.1001-1552.2008.04.007

    [19]

    赵庆乐,吴怀春,李海燕,等. 利用采样定理与沉积速率确定旋回分析最佳采样间隔[J]. 地球科学:中国地质大学学报,2011,36(1):12-16.

    [20]

    谢国根,郑俊. 基于Matlab小波分析的旋回划分及其地质意义:以东海盆地西湖凹陷保椒斜坡带平北段Pb-1井平湖组为例[J]. 新疆石油地质,2016,37(2):169-172.

    [21]

    郑希民,郭彦如,刘化清,等. 应用自然伽玛测井曲线小波分析划分陆相坳陷盆地三级层序的方法:以鄂尔多斯盆地延长组为例[J]. 天然气地球科学,2006,17(5):672-676. doi: 10.3969/j.issn.1672-1926.2006.05.015

    [22]

    李江涛,李增学,余继峰,等. 基于测井数据小波变换的层序地层对比:以鲁西和济阳地区石炭、二叠系含煤地层为例[J]. 沉积学报,2005,23(4):639-645. doi: 10.3969/j.issn.1000-0550.2005.04.012

    [23]

    伊海生. 地层记录中旋回层序界面的识别方法及原理[J]. 沉积学报,2012,30(6):991-998.

    [24]

    郭少斌,陈成龙. 利用米兰科维奇旋回划分柴达木盆地第四系层序地层[J]. 地质科技情报,2006,26(4):27-30. doi: 10.3969/j.issn.1000-7849.2006.04.005

    [25]

    唐闻强,伊海生,陈云,等. 基于测井曲线频谱分析米氏旋回特征:以柴西尕斯地区上干柴沟组为例[J]. 科学技术与工程,2021,21(11):4360-4368. doi: 10.3969/j.issn.1671-1815.2021.11.009

    [26]

    秦国权. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的运用[J]. 海洋地质与第四纪地质, 1996, 16(4): 1-18.

    [27]

    田世峰,陈中强,查明. 珠江口盆地中中新世韩江组天文调谐地质年代表[J]. 中国石油大学学报(自然科学版),2012,36(1):27-32. doi: 10.3969/j.issn.1673-5005.2012.01.005

    [28]

    徐健,德勒恰提·加娜塔依. 米兰科维奇旋回识别与天文标尺的建立:以莫索湾地区莫21井三工河组一段为例[J]. 地质科技通报,2021,40(2):197-207.

    [29]

    LASKAR J,ROBUTEL P,JOUTEL F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics,2004,428(1):261-285. doi: 10.1051/0004-6361:20041335

    [30]

    田茜. 柴达木盆地新生代生物标志化合物特征与亚洲内陆干旱环境演化[D]. 北京: 中国科学院大学, 2017.

    [31]

    薛力园,丁旋,万晓樵. 南海北部陆丰凹陷LF14井中新世浮游有孔虫生物地层研究[J]. 微体古生物学报,2017,34(3):320-332.

  • 加载中

(7)

计量
  • 文章访问数:  1655
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2021-10-13
录用日期:  2022-02-24
刊出日期:  2022-04-28

目录