Status quo of progress in key technology for international deepwater oil and gas production from the perspective of patent analysis
-
摘要:
深水油气资源丰富,是近年全球油气勘探热点及增储上产的主力来源。通过专利分析,可视化呈现了国际深水油气关键技术发展态势。结果表明,全球深水油气相关的专利申请数量与深水油气勘探开发历程高度吻合,反映了技术进步是推动深水油气勘探和开发活动的重要内部动力,政府决策和全球油价是影响深水油气发展的外部动力;美国是全球深水油气勘探与开发的主要引领力量,中国深水油气勘探开发技术高速发展,与巴西等深水油气勘探开发活动成熟的国家构成了主要的技术应用国;斯伦贝谢、哈利伯顿以及通用电气等石油巨头专利技术在全球具有明显的优势,在技术领域均有布局且所占比重较大,中国中海油则侧重于钻井技术的研发和布局;未来,深水油气的革新仍将围绕钻探类核心技术展开,其快速形成的技术网络与一些边缘的技术和核心技术之间建立更加紧密的关联,或形成新的技术网络。
Abstract:The deep-water oil and gas resources are plentiful, making it a hotspot for global oil-gas exploration and the primary driver of rising reserves and production. The development trend of international deep-water oi-gas key technologies was studied based on patent analysis and visualized in diagrams. Results show that the United States is the world leader in global deep-water oil and gas discovery and exploitation. Due to the rapid development of technology, China and the western developed countries, as well as countries with mature exploration activities, such as Brazil, are the main technology application country. The international oil giants (such as Schlumberger, Halliburton, and General Electric) and other American enterprises and institutions have clear advantages in patent technologies internationalization. Patents in deep-water oil and gas exploration and development technologies are held by mainly the Schlumberger, Halliburton, and General Electric, while CNOOC of China focused on deep-water oil and gas drilling technologies. The number of global deep-water oil and gas patent applications is highly consistent with the development history of deep-water oil and gas industry, indicating that technical innovation is an important internal driving force for the deep-water oil and gas industry, while political policies and global oil prices are external driving forces. The deep-water oil and gas industry’s development will continue to rely on conventional core technologies (e.g. fracking) in the future, while increasingly-evolving technological networks and ventures will be more closely connected to marginal and core technologies, pushing new technology networks forward.
-
表 1 全球深水油气专利排名前20位手工代码
Table 1. Top 20 manual codes for global deepwater oil and gas patents
序号 手工代码 技术术语 1 H01-B01 MARINE DRILLING STRUCTURES AND EQUIPMENT
海上钻井结构和设备2 H01-D05 MARINE PRODUCTION EQUIPMENT FOR CRUDE OIL AND GAS
海上石油与天然气生产设备3 H01-B03D TRANSMISSION/GENERATION OF POWER, DATA ETC.
发电量及数据传输4 H01-B03B ROTARY DRILLING - WELL CONTROL EQUIPMENT
旋转钻井-井控设备5 Q24-P08 FLOATING BUILDINGS, DRILLING PLATFORMS, WORKSHOPS
浮动建筑、钻井平台、生产车间6 Q49-A MINING AND QUARRYING EQUIPMENT
采矿和采石设备7 Q49-H MAINTENANCE EQUIPMENT; EQUIPMENT AND METHODS FOR REMOVING TOOLS FROM MINES, BOREHOLES OR WELLS
维护设备;矿井、钻孔或钻井中提取工具的装备和方法8 Q49-V35 FLUIDS, SLURRY
钻井液、泥浆9 H01-C01 WELL COMPLETION, STIMULATING, AND SERVICING - CASING AND TUBING [GENERAL] [EXC. WELL PACKERS]
完井,增产和维护-套管和通用输油管、封井器10 H01-C06 WELLHEAD EQUIPMENT [GENERAL]
通用井口设备11 H01-B03C ROTARY DRILLING - SUBSURFACE EQUIPMENT
旋转钻井-地下设备12 Q49-A01 EXTRACTION EQUIPMENT
萃取设备13 H01-B03A ROTARY DRILLING - DERRICKS, RIG FLOOR EQUIPMENT
旋转钻井-井架,钻台设备14 H01-B03C3 ROTARY DRILLING - DRILL PIPE
旋转钻杠15 A12-W10 MINING, OIL WELLS
矿井,油井16 H01-C11 TESTING, CONTROL OPERATIONS AND EQUIPMENT, GENERAL
通用测控流程和装备17 H01-C06A WELLHEAD EQUIPMENT - BLOWOUT PREVENTERS
井口设备-防喷器18 H01-C10 WELL SERVICING 中文:油井服务 17 H01-A CRUDE OIL AND NATURAL GAS EXPLORATION [UNCLASSIFIED]
未分类的原油和天然气勘探20 H01-D03 MARINE DRILLING STRUCTURES AND EQUIPMENT - SEMI-SUBMERSIBLE PLATFORMS
海洋钻井结构与设备-半潜式平台表 2 排名全球前10位石油公司专利区域布局概况
Table 2. Overview of the patent area layout of the top 10 oil companies in the world
国家 中海洋 斯伦贝谢 哈里伯顿 大宇 三星 美国 3 478 418 2 - 中国 614 7 27 2 3 英国 - 47 72 - - 韩国 - 2 - 396 348 加拿大 1 53 102 - - 挪威 - 5 62 - 1 欧洲专利组织 - 45 58 - - 巴西 - 26 91 - - 法国 - 6 2 - - 表 3 排名前10高被引专利分布
Table 3. Distribution of the top 10 highly cited patents
序号 标题 专利号 申请人 被引证频次 1 Cementing in subterranean zone, e.g., conductor pipe in offshore wells, involves reducing transition time of pumpable cement slurry using iron compound, placing slurry in subterranean zone, and setting for hardening
地下区域固井,例如海上油井中的导管,包括使用铁化合物减少可泵送水泥浆的过渡时间,将泥浆液硬化固定在地下区域US6457524-B1 美国哈里伯顿公司 243 2 Physical parameter monitoring system for wellbores used for hydrocarbon production, has data processor which calculates physical parameter such as stress, strain based on light receiving from distributed optical sensor
用于油气生产的井眼物理参数监测系统,具有数据处理器,可根据分布式光学传感器接收的光计算应力、应变等物理参数WO200257805-A2 TUBEL P S 228 3 Wellbore constructing assembly for drilling of oil or gas wells or well completion, includes chemical casing for casing borehole and expandable casing disposed in wellbore
用于钻探石油或天然气井或完井的井筒构造组件,包括用于套管钻孔的化学套管和设置在井筒中的可膨胀套管WO2003042489-A2 美国哈里伯顿公司 189 4 Gathering natural gas using dumped carbon dioxide-as heat generating source by injecting (liquefied) carbon dioxide into hydrate layers of natural gas
通过向天然气水合物层注入(液化)二氧化碳,利用倾倒的二氧化碳作为发热源收集天然气CA2062258-A 日本兴康公司 187 5 Conducting exploration drilling offshore using a single derrick - with primary and auxiliary exploration drilling operations performed simultaneously to shorten the critical path of primary drilling activity
使用单个井架进行海上勘探钻井—同时进行主要和辅助勘探钻井作业,以缩短主要钻井活动的关键路径WO9742393-A1 瑞士越洋近海公司 186 6 Magnetization of well casing to create magnetic anomaly - which can be detected in nearby well-bore or relief well being drilled
对井套进行磁化,以产生磁性异常,在附近的井筒或正在钻的救济井中检测到EP104854-A 埃克森美孚公司 179 7 Universal self-propelled system for clean-up, inspection, and reconstructive repairs of surface of vessel hulls, has remotely operated vehicle equipped with spaced-apart hold-down propelling thrusters and autonomous device
用于清理、检查和重建修复船体表面的通用自推进系统,该系统有遥控车、间隔排列的推进器和自主装置WO2013157978-A1 ESAULOV E I 171 8 Black box recorder system for use in well, has receiver located on retrieval unit, where retrieval unit is brought into range of transmitter when data needs to be recovered from black box recorder
用于油井的黑匣子记录器系统,接收器位于回收装置上,当需要从黑匣子记录器中恢复数据时,将回收装置带入发射器范围WO2013076499-A2 海底网络公司 166 9 Offshore well drilling appts. - including blowout preventer bypass conduits with chokes connected to bottom of riser
海上油井钻探应用—包括防喷器旁路导管与立管底部连接的扼流圈US4046191-A 埃克森美孚公司 163 10 Drilling and completing wells - using stationary string connected to completion device and appts. for detaching the completion device
钻井和完井--使用与完井装置相连的固定绳索和脱离完井装置的应用EP713953-A2 贝克休斯公司 153 -
[1] 王陆新,潘继平,杨丽丽. 全球深水油气勘探开发现状与前景展望[J]. 石油科技论坛,2020,39(2):31-37. doi: 10.3969/j.issn.1002-302x.2020.02.005
[2] DORÉ A G. Barents Sea geology,petroleum resources,and commercial potential[J]. Barents Sea Geology and Petroleum Resources,1995,48(3):207-221.
[3] BLEVIN J E, STEPHENSON A E, WEST B G. Mesozoic structural development of the Beagle Sub-basin—implications for the petroleum potential of the Northern Carnarvon Basin[C]//The Sedimentary Basins of Western Australia 1: Proceedings of the Petroleum Exploration Society of Australia Symposium. Perth: Petroleum Exploration Society of Australia Western Australian Branch, 1994: 369-396.
[4] I’ANSON A,ELDERS C,MCHARG S. Marginal fault systems of the Northern Carnarvon Basin:Evidence for multiple Palaeozoic extension events,North-West Shelf,Australia[J]. Marine and Petroleum Geology,2019,101:211-229.
[5] JORHAM C,ZÜHLKE R,BOWMAN S,et al. Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos,Santos and Pelotas basins)[J]. Marine and Petroleum Geology,2010,27(9):1952-1980.
[6] DEMERCIAN S,SZATMARI P,COBBOLD P R. Style and pattern of salt diapirs due to thin-skinned gravitational gliding,Campos and Santos basins,offshore Brazil[J]. Tectonophysics,1993,228(3/4):393-433.
[7] 张功成,屈红军,赵冲,等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学,2017,28(10):1447-1477.
[8] 吴林强,张涛,徐晶晶,等. 全球海洋油气勘探开发特征及趋势分析[J]. 国际石油经济,2019,27(3):29-36.
[9] 梁杰,杨艳秋,龚建明,等. 墨西哥湾深水油气勘探对我国的启示[J]. 海洋地质动态,2009,25(1):17-19. doi: 10.3969/j.issn.1009-2722.2009.01.004
[10] 徐志诚,吕福亮,范国璋,等. 西非海岸盆地深水区油气地质特征和勘探前景[J]. 油气地质与采收率,2012,19(5):1-5. doi: 10.3969/j.issn.1009-9603.2012.05.001
[11] PAUL W,MARK G R,BARRY C M,et al. Evaluating the petroleum systems of the Northern Deep Gulf of Mexico through integrated basin analysis:An overview[J]. AAPG Bulletin,1998,82(5B):965-877.
[12] Marshall D. Deepwater discoveries keep west Africa at global forefront[J]. Offshore,1999,59(2):32-33.
[13] MORITIS G. Girassol,first Angola block 17 deepwater field to produce[J]. Oil & Gas Journal,2002,100(11):53-58.
[14] GUARDADO L R. Petroleum geology of the Campos Basin, Brazil, a model for a producing Atlantic type basin[C]. Edwards J D and Santogrossi P A, Divergent/Passive Margin Basin[A]. AAPG Memoir, 1990, 48, 3-80.
[15] ANDERSON J E. Controlson turbidite sand deposition during gravity-driven entension of a passive margin:Examples from Miocene sediments in Block4,Angola[J]. Marine and Petroleum Geology,2000,17(10):1165-1203.
[16] BAILEY W R,UNDERSCHULTZ J,DEWHURST D N,et al. Multi-disciplinary approach to fault and top seal appraisal; Pyrenees–Macedon oil and gas fields,Exmouth Sub-basin,Australian Northwest Shelf[J]. Marine and Petroleum Geology,2006,23:241-259.
[17] LISK M,O’BRIEN G W,EADINGTON P J. Quantitative evaluation of the oil-leg potential in the Oliver gas field,Timor Sea,Australia[J]. AAPG Bulletin,2002,86(9):1531-1542.
[18] TASSONE D R,HOLFORD S P,DUDDY I R,et al. Quantifying Cretaceous–Cenozoic exhumation in the Otway Basin,southeastern Australia,using sonic transit time data:implications for conventional and unconventional hydrocarbon prospectivity[J]. AAPG Bulletin,2012,98(1):67-117.
[19] BRINCAT M,GARTRELL A,LISK M,et al. An integrated evaluation of hydrocarbon charge and retention at the Griffin,Chinook,and Scindian oil and gas fields,Barrow Subbasin,North West Shelf,Australia[J]. AAPG Bulletin,2006,90(9):1359-1380.
[20] 赵亚娟,董瑜,朱相丽. 专利分析及其在情报研究中的应用[J]. 图书情报工作,2006,50(5):19-22. doi: 10.3969/j.issn.0252-3116.2006.05.005
[21] KRESTEL R,CHIKKAMATH R,HEWEL C,et al. A survey on deep learning for patent analysis[J]. World Patent Information,2021,65:102135.
[22] 司云波,李春新,徐金红,等. 全球油气领域专利态势分析[J]. 石油科技论坛,2014,33(6):66-71. doi: 10.3969/j.issn.1002-302x.2014.06.12
[23] 黄晨,徐英华,冯连勇,等. 中国油气产业专利发展态势分析[J]. 科技管理研究,2018,38(20):164-169. doi: 10.3969/j.issn.1000-7695.2018.20.023
[24] 王林. 天然气水合物领域关键专利技术剖析[J]. 当代石油石化,2020,28(6):27-34. doi: 10.3969/j.issn.1009-6809.2020.06.005
[25] 史政,钱门辉,陶成. 基于专利分析页岩气勘探技术的发展态势[J]. 科技创新与应用,2021,4:8-13,17.
[26] 郝洪,王珮. 美国联邦深水矿费减免政策分析[J]. 中国国土资源经济,2009,22(12):20-22,42. doi: 10.3969/j.issn.1672-6995.2009.12.008
[27] 马昌峰,王宝毅,张光华. 中国石油海洋油气业务发展的机遇与挑战[J]. 国际石油经济,2016,24(3):17-24. doi: 10.3969/j.issn.1004-7298.2016.03.003
[28] 马永涛,张旭,傅俊英,等. 核心专利及其识别方法综述[J]. 情报杂志,2014,33(5):38-43,70.