深海拖曳系统水下控制技术研究

李志彤, 董凌宇, 陆凯, 单瑞, 周吉祥. 深海拖曳系统水下控制技术研究[J]. 海洋地质前沿, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037
引用本文: 李志彤, 董凌宇, 陆凯, 单瑞, 周吉祥. 深海拖曳系统水下控制技术研究[J]. 海洋地质前沿, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037
LI Zhitong, DONG Lingyu, LU Kai, SHAN Rui, ZHOU Jixiang. Research on underwater control technology of deep-sea towing system[J]. Marine Geology Frontiers, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037
Citation: LI Zhitong, DONG Lingyu, LU Kai, SHAN Rui, ZHOU Jixiang. Research on underwater control technology of deep-sea towing system[J]. Marine Geology Frontiers, 2023, 39(3): 30-39. doi: 10.16028/j.1009-2722.2022.037

深海拖曳系统水下控制技术研究

  • 基金项目: 国家自然科学基金“深海拖体主被动姿态调节及定深控制方法研究”(42106186);自然资源部海底科学重点实验室开放基金“面向复杂海况的深海拖体自适应主被动姿态调节及定深控制技术研究”(KLSG2104);中国地质调查局项目“深海调查-测量”(DD20191003)
详细信息
    作者简介: 李志彤(1994—),男,硕士,助理工程师,主要从事海洋观测探测装备方面的研究工作. E-mail:lizhitong199488@163.com
  • 中图分类号: P736;P71

Research on underwater control technology of deep-sea towing system

  • 深海拖曳系统是人类开发利用海洋的一项重要手段。在众多深海探测装备中,深海拖曳系统以探测面积广、作业效率高、操控性能好等优势而得到了广泛应用。针对深海拖曳系统水下控制技术,从控制手段和控制策略2个方面对其发展历程、国内外研究现状等进行梳理,分析对比不同控制手段的优缺点,并对深海拖曳系统水下控制技术未来的研究方向进行展望,以期为深海拖曳系统的应用与发展提供参考。

  • 加载中
  • 图 1  深海拖曳系统水下控制手段分类

    Figure 1. 

    图 2  两种拖缆控制手段

    Figure 2. 

    图 3  采用被动控制手段的深海拖体

    Figure 3. 

    图 4  采用主动控制手段的深海拖体

    Figure 4. 

    图 5  二级深拖系统

    Figure 5. 

    表 1  深海拖曳系统不同水下控制手段对比

    Table 1.  The comparison of different underwater control means of underwater towed systems

    水下控制手段文献应用与提升优缺点
    拖缆控制手段收放拖缆人工收放[19]简单有效简单有效,深度调节作用显著;
    无法精确调控拖曳深度与拖曳姿态,控制精度低(能实现数米内的升沉波动)
    水下拖曳升沉补偿系统[20-22]自适应调节拖曳深度
    加装导流装置[23]有效降低拖缆阻力与拖缆抖动
    拖体控制手段被动控制手段安装固定水翼[18,30,31-35]加装流线型翼板技术简单,
    调节能力有限,可靠性与准确性低(能实现数米内的升沉波动)
    [36]加装双三角翼型翼板
    主动控制手段调节迫沉水翼攻角或加装推进器[39] *推进器−辅助推进
    液压装置−驱动水翼转动
    调控较为精确可靠,可实现一定波动范围内的定高或定深拖曳;
    成本高,控制时滞性较高,
    需要复杂的控制机构和控制策略
    [40] *电机-链条-链轮组件−驱动水翼转动
    [41] *纵倾调节滑块−调节拖体重心位置
    [42] *螺杆机构−调节拖体重心位置
    [60] *内部机构−调节拖体重心
    [43] ^调节迫沉水翼攻角−定深拖曳;
    水平尾翼−调节纵倾角
    [44-45] ^深度、横摇、转向等多自由度控制
    [47] ^多自由度可操纵水下控制
    二级拖曳系统被动控制手段安装固定水翼[56-59]良好的运动稳定性姿态稳定性高(正常海况下,横摇和纵摇角度可≤1°,横摇和纵摇周期可≤5 s,升沉量可≤0.15 m);
    成本高,布放回收困难,系统复杂
    主动控制手段调节迫沉水翼攻角[40]电机驱动尾翼调节拖体俯仰角
    注:标记*的解释为仅能调节单一拖曳自由度;标注^的解释为能够调节多个拖曳自由度。
    下载: 导出CSV
  • [1]

    丁忠军,任玉刚,张奕,等. 深海探测技术研发和展望[J]. 海洋开发与管理,2019,36(4):71-77. doi: 10.3969/j.issn.1005-9857.2019.04.016

    [2]

    陈鹰. 海洋观测方法之研究[J]. 海洋学报,2019,41(10):182-188.

    [3]

    朱心科,金翔龙,陶春辉,等. 海洋探测技术与装备发展探讨[J]. 机器人,2013,35(3):376-384.

    [4]

    BEASLEY B, BEST C, DAVIS D. Design of flying eye remotely operated vehicle for deep water surveillance[J]. Ocean Conference Record (IEEE), 2000: 2075-2099.

    [5]

    罗进华,朱友生,张宝平,等. 深拖系统在南海深水工程勘察中的应用[J]. 物探装备,2013,23(6):393-396.

    [6]

    单瑞,董凌宇,杜凯,等. 超短基线定位系统在深拖探测中的应用[J]. 海洋地质前沿,2019,35(9):29-35. doi: 10.16028/j.1009-2722.2019.09006

    [7]

    徐建,郑玉龙,包更生,等. 基于声学深拖调查的海山微地形地貌研究:以马尔库斯-威克海岭一带的海山为例[J]. 海洋学研究,2011,29(1):17-24. doi: 10.3969/j.issn.1001-909X.2011.01.003

    [8]

    冯强强,温明明,牟泽霖,等. 声学深拖系统在海底冷泉调查中的应用[J]. 测绘工程,2018,27(8):49-52,59. doi: 10.19349/j.cnki.issn1006-7949.2018.08.009

    [9]

    ALAN L,GRAEME S,BLAIR H,et al. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping[J]. Water Research,2016,93:289-295. doi: 10.1016/j.watres.2016.01.059

    [10]

    CHOU Y C,WANG C C,CHEN H H,et al. Seafloor characterization in the southernmost Okinawa Trough from underwater optical imagery[J]. Terrestrial,Atmospheric and Oceanic Sciences,2019,30(5):717-737. doi: 10.3319/TAO.2019.03.14.01

    [11]

    刘晓东,赵铁虎,曹金亮,等. 用于天然气水合物调查的轻便型声学深拖系统总体方案分析[J]. 海洋地质前沿,2015,31(6):8-16. doi: 10.16028/j.1009-2722.2015.06002

    [12]

    王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2006.

    [13]

    VU H X, DAVEY S J, FLETCHER F K, et al. Track-before-detect for an active towed array sonar[C]//Proceedings of Acoustics 2013. Victor Harbor, Australia: Australian Acoustical Society, 2013: 1-7.

    [14]

    金晓东. 水下拖曳系统水动力性能分析[D]. 广州: 华南理工大学, 2014.

    [15]

    NGUYEN T D, EGELAND O. Stabilization of towed cables[C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau: IEEE, 2004: 5059-5064.

    [16]

    ZHANG H T, GU H T, LIN Y, et al. Design and hydrodynamic analysis of towing device of the automated recovery of the AUV by the USV[C]//Proceedings of the IEEE International Conference on Information and Automation. Wuyi Mountain, China: IEEE, 2018: 416-421.

    [17]

    PEDERSEN E, SORENSEN A J. Modelling and control of towed marine seismic streamer cables[J]. IFAC Proceedings Volumes, 2001, 34( 7), 89-94.

    [18]

    裴轶群. 深海拖曳系统运动性能分析与定高控制研究[D]. 上海: 上海交通大学, 2011.

    [19]

    马伟,师子锋. 收放拖缆对拖体深度影响的仿真分析[J]. 水雷战与舰船防护,2012,20(3):67-69.

    [20]

    李世振,魏建华,胡波,等. 主动式水下拖曳升沉补偿系统的非线性控制[J]. 中南大学学报(自然科学版),2018,49(3):612-617. doi: 10.11817/j.issn.1672-7207.2018.03.014

    [21]

    王海波,王庆丰. 水下拖曳升沉补偿系统设计及其内模鲁棒控制[J]. 机械工程学报,2010,46(8):128-132.

    [22]

    王福贵,张强,梁顺安. 1000 hp主动钻井升沉补偿绞车的研制[J]. 机械工程师,2018(11):115-117,121. doi: 10.3969/j.issn.1002-2333.2018.11.038

    [23]

    王威,徐华源,孙波,等. 高分辨率多道地震勘探技术在南海天然气水合物调查中的应用[J]. 海洋地质前沿,2019,35(9):19-24. doi: 10.16028/j.1009-2722.2019.09004

    [24]

    WINGHAM P J. Comparative steady state deep towing performance of bare and faired cable systems[J]. Ocean Engineering,1983,10(1):1-32. doi: 10.1016/0029-8018(83)90037-9

    [25]

    易杏甫,王岩峰,王成,等. 海洋监测拖曳系统中拖缆导流套设计[J]. 海洋工程,2005,23(4):120-124. doi: 10.16483/j.issn.1005-9865.2005.04.019

    [26]

    刘天威, 黄国梁. 拖缆导流套顺流性能及流体动力测试报告[R]. 上海: 上海交通大学, 1992.

    [27]

    苑志江,金良安,田恒斗,等. 海洋拖曳系统的水动力理论与控制技术研究综述[J]. 科学技术与工程,2013,13(2):408-415,420. doi: 10.3969/j.issn.1671-1815.2013.02.029

    [28]

    LI B B,HUANG W,LIANG H. An efficient method to assess effect of fin on the course stability of towing system[J]. Ocean Engineering,2020,217:108005. doi: 10.1016/j.oceaneng.2020.108005

    [29]

    褚宏宪,梅赛,史慧杰,等. 海洋短排列高分辨率地震拖缆沉放深度测试分析[J]. 海洋地质前沿,2020,36(12):65-71. doi: 10.16028/j.1009-2722.2020.003

    [30]

    FORNARI,DANIEL J. A new deep-sea towed digital camera and multi-rock coring system[J]. EOS,Transactions American Geophysical Union,2003,84(8):69-76. doi: 10.1029/2003EO080001

    [31]

    COLEMAN D F, NEWMAN J B, BALLARD R D. Design and implementation of advanced underwater imaging systems for deep sea marine archaeological surveys[C]//Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence: IEEE, 2000.

    [32]

    BALLARD R D, YOERGER D R, STEWART W K, et al. Argo/Jason a remotely operated survey and sampling system for full-ocean depth[C]//Proceedings of the OCEANS 91 Proceedings. Honololu: IEEE, 1991.

    [33]

    OTSUKA K, MOMMA H S, IIOTTA H. Jamstec/deeptow camera system[R]. Japan Marine Science and Technology Center, 1991.

    [34]

    ZHU J M. Deep ocean research activity in China[C]//Proceedings of the Eleventh International Offshore and Polar Engineering Conference. Stavanger, Norway: ISOPE, 2001.

    [35]

    葛彤, 朱继懋. 6000米深海光学深拖系统升级改造课题研究报告[R]. 上海: 上海交通大学, 2009.

    [36]

    苑志江,金良安,迟卫,等. 双三角翼型拖曳体定深特性的水动力实验研究[J]. 中国测试,2013,39(3):108-112.

    [37]

    高国章,张家赫. 基于ADRC参数优化的拖曳式水下航行器定深控制分析[J]. 大连海事大学学报,2020,46(2):17-25. doi: 10.16411/j.cnki.issn1006-7736.2020.02.003

    [38]

    ABBOTT I H, VON DOENHOFF A E. Theory of wing sections[R]. New York: Dover Publications, 1959.

    [39]

    GWYN G, POLLARD R. Modern tools for upper ocean surveys[J]. Journal of Naval Science. 1993, 18(1): 66-80.

    [40]

    SCHUCH E M, LINKLATER A C, LAMBETH N W, et al. Design and simulation of a two stage towing system[C]// Oceans. IEEE, 2005.

    [41]

    NAKAMULA M,KAJIWARA H,KOTERAYAMA W. Development of an ROV operated both as towed and self-propulseve vehicle[J]. Ocean Engineering,2001,28:1-43. doi: 10.1016/S0029-8018(99)00058-X

    [42]

    WOOLSEY C A, GARGETT A E. Passive and active attitude stabilization for a tow-fish[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas: IEEE, 2002.

    [43]

    DESSUREAULT J G. "Batfish" A depth controllable towed body for collecting oceanographic data[J]. Ocean Engineering, 1976, 3(2): 99-100, IN5-IN6, 101-111.

    [44]

    YAMAGUCHI S, KOTERAYAMA W, YOKOBIKI T. Development of a motion control method for a towed vehicle with a long cable[C]//Proceedings of the 2000 International Symposium on Underwater Technology. Tokyo: IEEE, 2000: 491-496.

    [45]

    YAMAGUCHI S, KOTERAYAMA W, YOKOBIKI T. Effects of unsteady lift and cable tension on design of a control system of a towed vehicle[C]//Proceedings of the 11th International Offshore and Polar Engineering Conference. Stavanger, Norway, 2001: 339-345

    [46]

    杨晓帆, 周凯. 拖曳式剖面探测拖体系统构成及运动控制试验[J]. 海洋工程, 2009, 27(3): 122~126.

    [47]

    金晓东,吴家鸣. 多自由度控制水下拖曳体水动力响应分析[J]. 广东造船,2013,32(5):61-65. doi: 10.3969/j.issn.2095-6622.2013.05.038

    [48]

    孙烨,司先才,裴建新,等. 一种水下拖曳体的运动特性模拟研究[J]. 船舶工程,2018,40(增刊1):336-340. doi: 10.13788/j.cnki.cbgc.2018.S1.330

    [49]

    TORE J,BERNT J. Numerical and experimental studies of submerged towing of a subsea template[J]. Ocean Engineering,2012,42:147-154. doi: 10.1016/j.oceaneng.2012.01.003

    [50]

    刘启帮. 水下高速拖体流体动力性能研究[D]. 北京: 中国舰船研究院, 2016.

    [51]

    WU J,CHWANG A T. Experimental Investigation on a Two-part Underwater Towed System[J]. Ocean Engineering,2001,28(6):735-750. doi: 10.1016/S0029-8018(00)00030-5

    [52]

    GROSENBAUGH M A. Transient behavior of towed cable systems during ship turning maneuvers[J]. Ocean Engineering,2007,34(11):1532-1542.

    [53]

    庞师坤,刘旌扬,王健,等. 二级深拖系统的回转运动特性[J]. 船舶工程,2017,39(9):71-77. doi: 10.13788/j.cnki.cbgc.2017.09.071

    [54]

    冯苏, 朱克强. 水下拖曳系统运动姿态仿真研究[J]. 海洋工程, 2005, 11(4): 56-63.

    [55]

    庞师坤,刘旌扬,王健,等. 深海拖曳系统自稳定二级拖体姿态控制研究[J]. 船舶工程,2018,40(3):62-67. doi: 10.13788/j.cnki.cbgc.2018.03.062

    [56]

    郭军,冯强强,温明明,等. Teledyne Benthos TTV-301声学深拖系统在海底微地形地貌调查中的应用[J]. 测绘工程,2018,27(10):46-51.

    [57]

    单晨晨,温明明,刘斌,等. 基于合成孔径声学深拖调查的海底浅表层流体活动研究:以SAMS DT6000深拖在琼东南海域调查为例[J]. 地球物理学报,2020,63(12):4451-4462. doi: 10.6038/cjg2020O0173

    [58]

    曹金亮,刘晓东,张方生,等. DTA-6000声学深拖系统在富钴结壳探测中的应用[J]. 海洋地质与第四纪地质,2016,36(4):173-181. doi: 10.16562/j.cnki.0256-1492.2016.04.020

    [59]

    中船. 青岛成功研发3000m级声学深拖系统[J]. 军民两用技术与产品,2016(1):30. doi: 10.19385/j.cnki.1009-8119.2016.01.045

    [60]

    ABLOW C M,SCHECHTE R S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering,1983,10(6):443-457. doi: 10.1016/0029-8018(83)90046-X

    [61]

    郑荣,辛传龙,汤钟,等. 无人水面艇自主部署自主水下机器人平台技术综述[J]. 兵工学报,2020,41(8):1675-1687. doi: 10.3969/j.issn.1000-1093.2020.08.022

    [62]

    李英辉,李喜斌,戴杰,等. 拖曳系统计算中拖缆与拖体的耦合计算[J]. 海洋工程,2002,20(4):37-42. doi: 10.3969/j.issn.1005-9865.2002.04.007

    [63]

    da SILVA GOMES S,PINHEIRO GOMES S C. A new dynamic model of towing cables[J]. Ocean Engineering,2021,220:107653. doi: 10.1016/j.oceaneng.2020.107653

    [64]

    CHAPMAN D A. The adjustment of fin size to minimize the ship induced pitching motion of a towed fish[J]. Ocean Engineering,1984,11:23-64. doi: 10.1016/0029-8018(84)90022-2

    [65]

    GERLER M, HARGEN G L. Standard equations of motions for submarine simulation[R]. Washington: Technical Report DTMB 2510 David Taylor Research Center, 1967.

    [66]

    ABKOWITZ M A. Stability and motion control of ocean vehicles[M]. MA: MIT Press, 1969: 32-50.

    [67]

    SUN H B,CHEN G Q,LIN W J. A hydrodynamic model of bridle towed system[J]. Journal of Marine Science and Technology,2019,24(1):200-207. doi: 10.1007/s00773-018-0546-2

    [68]

    苑志江,金良安,迟卫,等. 海洋拖曳系统的船/缆/体耦合模型研究[J]. 船舶力学,2016,20(10):1252-1261. doi: 10.3969/j.issn.1007-7294.2016.10.005

    [69]

    BUCKHAM B,NAHON M,SETO M,et al. Dynamics and control of a towed underwater vehicle system,part I model development[J]. Ocean Engineering,2003,30(4):453-470. doi: 10.1016/S0029-8018(02)00029-X

    [70]

    WATARU K, SATORU Y, TAKASHI Y, et al. Space-continuous measurements on ocean current and chemical properties with the intelligent towed vehicle“Flying Fish”[J]. IEEE Journal of Oceanic Engineering. 2000, 25(1): 130-138.

    [71]

    卢祎斌,高占胜,金良安,等. 拖曳系统的水翼控制运动模型及仿真[J]. 指挥控制与仿真,2012,34(6):89-95.

    [72]

    郑智林,苑志江,金良安,等. 舰船机动中拖曳系统建模与定深控制研究[J]. 兵器装备工程学报,2016,37(4):106-110. doi: 10.11809/scbgxb2016.04.026

    [73]

    KATO N. Underwater towed vehicle maneuverable in both vertical and horizontal axis[J]. Journal of the Society of Naval Architects of Japan,1991(169):111-122.

    [74]

    KATO N. Guidance and control of underwater towed vehicle maneuverable in both vertical and horizontal axis[C]//Proc. Second Int. Offshore Polar Eng. Conf. US: ISOPE, 1992.

    [75]

    TEIXEIRA F C, AGUIAR A P, PASCOAL A M. Nonlinear control of an underwater towed vehicle[C]//7th IFAC Conference on Manoeuvring and Control of Marine Craft. Lisbon: IFAC, 2006.

    [76]

    GOBAT J I, Grosenbaugh M A. Time domain numerical simulation of ocean cable structures[J]. Ocean Engineering, 2006, 33: 1373-1400.

    [77]

    LEONARD J W, KARNOSKI S R. Simulation of tension controlled cable deployment[J]. Applied Ocean Research, 2001, 12(1): 34-42.

    [78]

    CAMPA G,WILKIE J,INNOCENTI M. Robust control and analysis of a towed underwater vehicle[J]. International Journal of Adaptive Control and Signal Processing,1988,12:689-716.

    [79]

    WU J M,CHWANG A T. Investigation on a two-part underwater maneuverable towed system[J]. Ocean Engineering,2001,28:1079-1096. doi: 10.1016/S0029-8018(00)00024-X

    [80]

    KATO N. Underwater towed vehicle maneuverable in both vertical and horizontal planes[C]//First International Offshore and Polar Engineering Conference. Edimburgh, UK, The International Society of Offshore and Polar Engineers, 1991: 85-92.

    [81]

    FRANCISCO C T,ANTÓNIO P A,ANTÓNIO P. Nonlinear adaptive control of an underwater towed vehicle[J]. Ocean Engineering,2010,37:1193-1220. doi: 10.1016/j.oceaneng.2010.05.010

    [82]

    MINOWA A, TODA M. Motion control of towed underwater vehicles with movable wings using a high-gain observer based approach[C]. 2015 IEEE 10th Conference on. IEEE. US: IEEE, 2015: 1893-1898.

    [83]

    MINOWA A,TODA M. A high gain observer based approach to robust motion control of towed underwater vehicles[J]. IEEE Journal of Oceanic Engineering,2018(99):1-14.

    [84]

    吴家鸣, 叶家玮. 自主稳定可控制水下拖体的设计及控制性能[J]. 华南理工大学学报. 2005, 33(5): 69-73.

    [85]

    井安言,裴武波. 水下拖体姿态角自适应控制器设计[J]. 数字海洋与水下攻防,2019,2(4):80-86.

    [86]

    井安言,佘湖清. 基于神经网络观测器的水下拖体输出反馈姿态控制[J]. 兵工学报,2020,41(12):2504-2513. doi: 10.3969/j.issn.1000-1093.2020.12.016

    [87]

    刘启帮,艾艳辉,王盟,等. 基于CFD仿真的导流缆侧漂分析[J]. 大连海事大学学报,2016,42(2):41-45. doi: 10.16411/j.cnki.issn1006-7736.2016.02.007

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1005
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-02-10
刊出日期:  2023-03-28

目录