海滩岩在南海北部中晚全新世海平面重建中的应用和不确定性分析

唐立超, 乐远福. 海滩岩在南海北部中晚全新世海平面重建中的应用和不确定性分析[J]. 海洋地质前沿, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049
引用本文: 唐立超, 乐远福. 海滩岩在南海北部中晚全新世海平面重建中的应用和不确定性分析[J]. 海洋地质前沿, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049
TANG Lichao, YUE Yuanfu. Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea[J]. Marine Geology Frontiers, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049
Citation: TANG Lichao, YUE Yuanfu. Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea[J]. Marine Geology Frontiers, 2023, 39(3): 1-19. doi: 10.16028/j.1009-2722.2022.049

海滩岩在南海北部中晚全新世海平面重建中的应用和不确定性分析

  • 基金项目: 国家重点研发计划项目(2017YFA0603300);国家自然科学基金(41702182);广西省自然科学基金(2018GXNSFAA281293)
详细信息
    作者简介: 唐立超(1998—),男,在读硕士,主要从事过去海平面重建方面的研究工作. E-mail:tanglichao2020@163.com
    通讯作者: 乐远福(1982—),男,博士,硕士生导师,主要从事全球变化与环境演变研究工作. E-mail:yuanfu.yue@gxu.edu.cn
  • 中图分类号: P736;P731.23

Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea

More Information
  • 过去海平面变化特征对认识现代海平面变化过程和预估未来情景具有重要科学和现实意义。海滩岩作为热带和亚热带地区海岸潮间带特有的沉积岩,是海岸变迁和古海平面高程的重要标志物。然而,由于存在海滩岩形成后动力条件发生变化、采用的测年方法不同以及海平面高程估算和分析误差等问题,基于海滩岩的过去海平面重建结果依然存在较大争议和不确定性。我们分析和总结了南海北部中晚全新世海滩岩重建海平面的进展,以及在海平面研究中存在的问题和潜在机遇,从海滩岩的形成年代与海滩岩形成后高程产生变化等方面进一步量化研究海滩岩重建海平面变化的不确定性。同时,通过对南海北部海南岛东部沿岸的3块原生珊瑚礁(1块大型块状滨珊瑚和2块滨珊瑚微环礁)进行高精度高程测量和铀系测年,共获得6个海平面数据,结合冰川均衡调整模型(Glacial Isostatic Adjustment,GIA)和ICE-5G模型结果,对基于海滩岩重建的南海北部中晚全新世海平面的可靠性进行比较和评估。以上不确定性分析和研究结果表明,通过年代与高程校正后,海平面重建结果准确性进一步提高。研究结果可为以其他海平面标志物重建的过去海平面的不确定性分析和可靠性分析提供参考和借鉴。

  • 加载中
  • 图 1  南海北部地理位置以及南海北部海滩岩的空间分布

    Figure 1. 

    图 2  珊瑚照片及数字化X射线成像

    Figure 2. 

    图 3  海滩岩发育时间分布

    Figure 3. 

    图 4  南海北部基于海滩岩和新增珊瑚礁的相对海平面数据(校正前)

    Figure 4. 

    图 5  14C测年结果校正前和校正后的对比

    Figure 5. 

    图 6  海滩岩和珊瑚记录的海平面对比

    Figure 6. 

    图 7  重建的南海北部中晚全新世相对海平面曲线(校正后)

    Figure 7. 

    图 8  其他地区相对海平面曲线对比

    Figure 8. 

    表 1  南海北部海南岛东部沿岸珊瑚样品的同位素数据和铀系年龄[31]

    Table 1.  The isotopic data and U-series ages of the coral samples from the eastern coast of Hainan Island, the northern South China Sea [31]

    样本编号U /
    (μg/g)
    ±2σ232Th /
    (ng/g)
    ±2σ230Th/ 232Th±2σ230Th/238U±2σ234U/ 238U±2σ年龄/
    a BP
    ±2σ年龄/
    cal a BP
    ±2σ校正后234U/ 238U值±2σδ 234U/‰±2σ
    TGLC-0013.151 60.002 85.825 60.006 191.390.160.055 680.000 091.146 50.001 65423125375271.148 80.001 6148.81.6
    TGLC-0023.167 70.002 33.120.004 1170.770.440.055 430.000 131.144 90.001 15406145381191.147 20.001 1147.21.1
    TGLC-0033.0130.002 32.314 70.002 8151.470.430.038 350.000 11.147 60.001 63704113684151.149 10.001 6149.11.6
    TGLC-0042.921 80.0023.154 50.003 5104.530.230.037 190.000 081.149 70.001 3358493556161.151 20.001 3151.21.3
    QGC-0012.912 60.001 32.150 50.002 3225.620.460.054 90.000 11.147 10.001 15343115324151.149 30.001 1149.31.1
    QGC-0022.820 70.002 21.022 10.001 3464.191.050.055 430.000 111.14750.00135394135385141.149 80.001 3149.81.3
    注:表内数据源自文献[31]。
    下载: 导出CSV

    表 2  南海北部海滩岩记录的过去海平面变化信息(14C测年)[22, 25, 59-68]

    Table 2.  The past sea-level change recorded by beachrock in the northern South China Sea (14C dating) [22, 25, 59-68]

    区域点位样品编号纬度/(N)经度/(E)未校正年龄/
    a BP
    ±2σ 误差海平面高程/cm校正后年龄a/
    cal a BP
    构造抬升高程b/cm校正后的海平面高程c/cm数据来源
    下限年龄上限年龄中值年龄
    珠三角深圳西冲西冲砂堤25°07'104°06'2 179852501 3571 6171 4973.29246.71[64]
    珠三角惠州碧甲亚妈庙沙堤25°11'119°16'2 415802001 6271 9051 7713.90196.10[64]
    粤东汕头大屿山贝澳湾内沙堤23°02'—23°38'116°14'—117°19'2 820951702 1042 4312 2714.54165.46[64]
    粤东汕头大屿山贝澳湾内沙堤23°02'—23°38'116°14'—117°19'2 38090501 5781 8701 7293.4646.54[64]
    粤东汕头大屿山贝澳湾内沙堤23°02'—23°38'116°14'—117°19'1 70080−48891 1361 0042.01−6.01[64]
    粤东汕头大屿山贝澳湾内沙堤23°02'—23°38'116°14'—117°19'1 66075808331 0789621.9278.08[64]
    粤东汕头大屿山长沙湾海滩23°02'—23°38'116°14'—117°19'1 3006005246936171.23−1.23[64]
    粤西茂名电白茂名电白21°29'110°53'5 5201301005 3515 7215 54511.0988.91[60]
    粤东潮州饶平潮州饶平23°28'—24°14'116°35'—117°11'5 1601001504 9505 3045 12910.26139.74[60]
    北部湾广西涠洲岛涠洲岛21°02'109°06'6 0001006005 9096 2166 06412.13587.87[60]
    海南岛乐东莺歌海莺歌海19°11'110°57'5 9959505 9086 2076 05921.21−21.21[60]
    粤东汕头河浦KWG-31023°26'116°60'3 3201005002 7343 0332 8895.78494.22[66]
    粤东汕头澄海KWG-44023°46'116°75'2 485702501 7211 9811 8553.71246.29[66]
    粤东惠州惠东平海岭头22°98'114°72'2 415852001 6231 9101 7713.54196.46[66]
    珠三角深圳西冲KWG-20925°07'104°06'2 170851501 3501 6071 4883.27146.73[66]
    粤东汕头南澳KWG-30723°42'117°02'1 990803501 1711 4111 2992.60347.40[66]
    粤东汕头南澳2-①23°42'117°02'3 2301002512 6312 9462 7815.56245.44[63]
    粤东汕头南澳2-②23°42'117°02'3 4601002542 8843 2063 0526.10247.90[63]
    粤东潮州饶平1-⑤23°28'—24°14'116°35'—117°11'3 050100882 4072 7112 5555.1182.89[63]
    粤东潮州饶平1-④23°28'—24°14'116°35'—117°11'3 26095692 6802 9732 8185.6463.36[63]
    粤东潮州饶平1-③23°28'—24°14'116°35'—117°11'3 500100152 9353 2593 1006.208.80[63]
    粤东潮州饶平1-②23°28'—24°14'116°35'—117°11'3 670105−283 1443 4663 3066.61−34.61[63]
    粤东潮州饶平1-①23°28'—24°14'116°35'—117°11'3 880120−1043 3823 7393 5697.14−111.14[63]
    珠三角江门台山海晏公角22°15'112°48'3 9101101273 4343 7743 6057.93119.07[63]
    珠三角江门台山海晏公角22°15'112°48'3 600100523 0633 3783 2217.0944.91[63]
    珠三角江门台山海晏公角22°15'112°48'2 560953601 7932 1051 9494.29355.71[63]
    珠三角深圳西冲深圳大鹏西冲25°07'104°06'2 485852501 7071 9921 8564.08245.92[63]
    雷州半岛雷州半岛南部雷州半岛南部20°91'110°09'1 040651003064923981.3998.61[63]
    海南岛三亚大东海三亚大东海18°19'109°28'5 450190605 2305 7265 46219.1240.88[22]
    海南岛乐东莺歌海乐东莺歌海19°11'110°57'4 365851004 0514 3684 19714.6985.31[22]
    海南岛三亚鹿回头鹿回头水尾岭18°21'109°49'4 3452102003 8634 4534 16914.59185.41[22]
    海南岛三亚东瑁岛东瑁岛东岸18°09'—18°37'108°56'—109°48'3 865852303 3983 6853 54812.42217.58[22]
    海南岛三亚东瑁岛东瑁岛西岸18°09'—18°37'108°56'—109°48'3 810852003 3423 6253 48212.19187.81[22]
    海南岛三亚鹿回头鹿回头水尾岭18°21'109°49'3 6301904002 9893 4993 25711.40388.60[22]
    粤东揭阳惠来惠来龙江新开河22°53'—23°46'115°36'—116°37'3 29011002 7003 0212 8546.28−6.28[22]
    海南岛三亚马岭三亚马岭18°09'—18°37'108°56'—109°48'2 6307501 8862 1692 0367.13−7.13[22]
    海南岛临高美夏临高美夏19°34'—20°20'109°03'—109°53'2 1609001 3391 6021 4785.17−5.17[22]
    海南岛文昌烟墩烟墩二公滩19°20'—20°10'108°21'—111°03'1 890903001 0621 3091 1924.17295.83[22]
    粤西阳江海陵海陵劳元21°28'—22°41'111°16'—112°21'1 6507022082610639512.09217.91[22]
    海南岛三亚小东海三亚小东海18°09'—18°37'108°56'—109°48'1 1907004496305311.86−1.86[22]
    海南岛东方八所东方八所18°43'—19°38'108°36'—109°07'1 0209002774963781.32−1.32[22]
    海南岛乐东九所乐东九所18°43'—19°38'108°36'—109°07'1 0209002774963781.32−1.32[22]
    海南岛三亚鹿回头3118°21'109°49'3 7501903003 1543 6733 40911.93288.07[65]
    海南岛文昌烟墩4519°20'—20°10'108°21'—111°03'2 0541091001 2351 5191 3694.7995.21[65]
    海南岛文昌烟墩5819°20'—20°10'108°21'—111°03'1 020804002844893801.33398.67[65]
    海南岛三亚海头918°09'—18°37'108°56'—109°48'4 43913204 0874 4994 29215.02−15.02[67]
    海南岛三亚天涯海角1318°29'109°34'4 170140603 7154 1463 94013.7946.21[67]
    海南岛三亚天涯海角1718°29'109°34'3 8441092003 3583 6873 52512.34187.66[67]
    海南岛三亚天涯海角2918°29'109°34'3 33311402 7363 0632 90610.17−10.17[67]
    海南岛三亚大东海5118°19'109°28'2 36090501 5501 8401 7055.9744.03[67]
    海南岛三亚大东海5418°19'109°28'2 3257501 5301 7901 6625.82−5.82[67]
    海南岛文昌烟墩5519°20'—20°10'108°21'—111°03'2 212132501 3591 7001 5405.3944.61[67]
    海南岛临高龙豪5719°34'—20°20'109°03'—109°53'2 1418101 3251 5701 4575.10−5.10[67]
    海南岛儋州排浦6719°63'109°16'1 0878603215354381.53−1.53[67]
    珠三角香港贝澳香港贝澳22°32'114°17'1 700801508891 1361 0042.21147.79[61]
    海南岛西沙东岛西沙东岛16°33'112°02'3 630150-3 0403 4603 256--[22]
    海南岛西沙东岛西沙东岛16°33'112°02'3 250120-2 6372 9942 806--[22]
    海南岛西沙群岛永兴岛西北16°50'112°20'2 76090-2 0402 3382 195--[63]
    粤东汕头广澳汕头广澳23°22'116°78'1 725125-8811 1921 028--[59]
    粤东汕头广澳汕头广澳23°22'116°78'2 725125-1 9662 3342 154--[59]
    粤东汕头广澳汕头广澳23°22'116°78'3 225125-2 5902 9652 773--[59]
    粤东潮州海山岛潮州海山岛23°41'116°59'1 725125-8811 1921 028--[59]
    粤东潮州海山岛潮州海山岛23°41'116°59'2 725125-1 9662 3342 154--[59]
    粤东潮州海山岛潮州海山岛23°41'116°59'3 225125-2 5902 9652 773--[59]
    粤东潮州海山岛潮州海山岛23°41'116°59'3 725125-319235603 376--[59]
    珠三角香港贝澳香港贝澳22°32'114°17'1 61070-7851 018907--[61]
    海南岛西沙东岛716°33'112°02'4 856200-4 5475 1114 830--[67]
    海南岛西沙东岛2616°33'112°02'3 417136-2 8033 1833 004--[67]
    海南岛西沙东岛2716°33'112°02'3 378133-2 7653 1332 959--[67]
    海南岛海南抱虎港碎屑上层19°20'—20°10'108°21'—111°03'3 34030-2 7822 9932 902--[62]
    海南岛海南抱虎港粗砂层19°20'—20°10'108°21'—111°03'3 40030-2 8553 0802 975--[62]
    海南岛海南抱虎港碎屑下层19°20'—20°10'108°21'—111°03'3 51030-2 9973 2253 114--[62]
    海南岛西沙群岛
    广金岛
    GJ16°27'111°42'1 85030-1 0701 2511 156--[25]
    海南岛西沙群岛
    永兴岛
    YX16°50'112°20'1 25030-509646578--[25]
    海南岛三亚鹿回头LH18°21'109°49'3 16030-2 5882 7992 695--[25]
    粤东潮州海山岛Bed-1223°41'116°59'2 91030-2 2842 5142 395--[68]
    粤东潮州海山岛Bed-1023°41'116°59'3 53030-3 0243 2523 140--[68]
    粤东潮州海山岛Bed-523°41'116°59'3 72030-3 2593 4643 370--[68]
    a:对表2中的原始数据(即未校正的数据),使用最新的CALIB 8.0重新校正。使用海洋校正曲线Marine 20,并考虑北半球碳库效应与区域海洋碳库校正值。5000 a BP之前的区域海洋碳库效应年龄偏差δR为(151±85) a,之后的为(89±59) a。b:考虑南海北部构造作用的影响,本文以平均速率0.035 mm/a计算雷琼区域海平面受构造抬升运动的影响,珠江三角洲的构造抬升速率为0.022 mm/a,北部湾及其他地区的构造抬升速率为0.020 mm/a。c:RSL=A-TUE, A为原海平面高程,TUE为平均构造抬升高程,RSL为校正后海平面高程。
    下载: 导出CSV

    表 3  南海北部海滩岩和新增珊瑚样品记录的过去海平面变化信息(铀系测年)[31, 51]

    Table 3.  The past sea-level change recorded by beachrock and the newly added coral samples in the northern South China Sea (U-series dating) [31, 51]

    区域点位样品编号标志物纬度/
    (°N)
    经度/
    (°E)
    校正后234U/ 238U值±2σδ 234U/
    ±2σ未校正年龄/
    a BP
    ±2σ校正后年龄/
    cal a BP
    ±2σ日历年龄
    (距1950年年龄)/
    cal a BP
    ±2σ海平面高程/cm误差数据来源
    北部湾涠洲岛The 7th layer of BG海滩岩21°04'109°06'1.147 20.6147.20.6928109131284512100.335[51]
    北部湾涠洲岛The 6th layer of BG海滩岩21°04'109°06'1.147 10.6147.10.6866138362076820100.635[51]
    北部湾涠洲岛The 4th layer of BG海滩岩21°04'109°06'1.148 41.5148.41.514572213426212746298.835[51]
    北部湾涠洲岛The 1th layer of BG海滩岩21°04'109°06'1.1441.5144.01.518442617804217124297.335[51]
    北部湾涠洲岛The 4th layer of GSB海滩岩21°03'109°08'1.146 81.6146.81.6188026183435176635103.135[51]
    北部湾涠洲岛The 2th layer of GSB海滩岩21°03'109°08'1.146 51.7146.51.7177125176026169226103.335[51]
    北部湾涠洲岛The 1th layer of GSB海滩岩21°03'109°08'1.14561.3145.61.3135819133721126921104.835[51]
    北部湾涠洲岛The 2th layer of HL-I海滩岩21°02'109°08'1.146 10.8146.10.814901514432813752894.435[51]
    北部湾涠洲岛The 1th layer of HL-I海滩岩21°02'109°08'1.1460.7146.00.715721315611414931494.035[51]
    北部湾涠洲岛The 4th layer of HL-II海滩岩21°02'109°08'1.147 30.8147.30.870613701136331397.035[51]
    北部湾涠洲岛The 3th layer of HL-II海滩岩21°02'109°08'1.1460.7146.00.714681414411913731994.435[51]
    北部湾涠洲岛The 2th layer of HL-II海滩岩21°02'109°08'1.1460.7146.00.714111914051913371994.635[51]
    北部湾涠洲岛The 4th layer of HL-III海滩岩21°02'109°08'1.147 20,8147.20,877412694416264197.135[51]
    北部湾涠洲岛The 3th layer of HL-III海滩岩21°02'109°08'1.147 60.7147.60.76838672106041097.135[51]
    海南岛铜鼓岭TGLC-001珊瑚19°63'111°02'1.148 81.6148.81.6542312537527530427200.29.8[31]
    海南岛铜鼓岭TGLC-002珊瑚19°63'111°02'1.14721.1147.21.1540614538119531019198.59.8[31]
    海南岛铜鼓岭TGLC-003珊瑚19°64'111°01'1.149 11.6149.11.6370411368415361315183.49.8[31]
    海南岛铜鼓岭TGLC-004珊瑚19°64'111°01'1.151 21.3151.21.3358419355616348516162.59.8[31]
    海南岛青葛QGC-001珊瑚19°31'110°66'1.149 31.1149.31.1534311532415525315208.49.8[31]
    海南岛青葛QGC-002珊瑚19°31'110°66'1.149 81.3149.81.3539413538514531414209.59.8[31]
    下载: 导出CSV

    表 4  选取的指示南海北部过去海平面的海滩岩和珊瑚礁数据(校正前)

    Table 4.  Selected beachrocks and corals indicating the ancient sea-level in the northern South China Sea(before correction)

    序号区域点位样品编号测年方法
    未校正年龄
    /a BP
    ±2σ 误差海平面高程
    /cm
    误差
    1珠三角惠州碧甲亚妈庙沙堤14C测年2 41580196.1010.0
    2粤东汕头大屿山贝澳湾内沙堤14C测年1 6607578.0810.0
    3粤东潮州饶平潮州饶平14C测年5 160100139.7410.0
    4粤东惠州惠东平海岭头14C测年2 41585196.4612.0
    5珠三角深圳西冲KWG-20914C测年2 17085146.7312.0
    6珠三角江门台山海晏公角14C测年3 910110119.0710.0
    7雷州半岛雷州半岛南部雷州半岛南部14C测年1 0406598.6110.0
    8海南岛三亚东瑁岛东瑁岛西岸14C测年3 81085187.8110.0
    9海南岛三亚天涯海角1714C测年3 844109187.6610.0
    10珠三角香港贝澳香港贝澳14C测年1 70080147.7910.0
    11北部湾涠洲岛The 7th layer of BG铀系测年84512100.335.0
    12北部湾涠洲岛The 6th layer of BG铀系测年76820100.635.0
    13北部湾涠洲岛The 4th layer of BG铀系测年1 2746298.835.0
    14北部湾涠洲岛The 1th layer of BG铀系测年1 7124297.335.0
    15北部湾涠洲岛The 4th layer of GSB铀系测年1 76635103.135.0
    17北部湾涠洲岛The 2th layer of GSB铀系测年1 69226103.335.0
    18北部湾涠洲岛The 1th layer of GSB铀系测年1 26921104.835.0
    19北部湾涠洲岛The 2th layer of HL-I铀系测年1 3752894.435.0
    20北部湾涠洲岛The 1th layer of HL-I铀系测年14931494.035.0
    21北部湾涠洲岛The 4th layer of HL-II铀系测年6331397.035.0
    22北部湾涠洲岛The 3th layer of HL-II铀系测年1 3731994.435.0
    23北部湾涠洲岛The 2th layer of HL-II铀系测年1 3371994.635.0
    24北部湾涠洲岛The 4th layer of HL-III铀系测年6264197.135.0
    25北部湾涠洲岛The 3th layer of HL-III铀系测年6041097.135.0
    26海南岛铜鼓岭TGLC-001铀系测年5 30427200.29.8
    27海南岛铜鼓岭TGLC-002铀系测年5 31019198.59.8
    28海南岛铜鼓岭TGLC-003铀系测年3 61315183.49.8
    29海南岛铜鼓岭TGLC-004铀系测年3 48516162.59.8
    30海南岛青葛QGC-001铀系测年5 25315208.49.8
    31海南岛青葛QGC-002铀系测年5 31414209.59.8
    下载: 导出CSV
  • [1]

    KOPP R E,KEMP A C,BITTERMANN K,et al. Temperature-driven global sea-level variability in the Common Era[J]. PNAS,2016,113(11):E1434.

    [2]

    WEBSTER J M,GEORGE N P J,BEAMAN R J,et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope:a mechanism for generating tsunamis on the north-east Australian coast?[J]. Marine Geology,2015,371(1):120-129.

    [3]

    ZHANG Y Z,XIE J Z,LIU L. Investigating sea-level change and its impact on Hong Kong's coastal environment[J]. Geographic Information Sciences,2011,17(2):105-112.

    [4]

    FREDERIKSE T, LANDERER F,CARON L,et al. The causes of sea-level rise since 1900[J]. Nature,2020,584(7821):393-397. doi: 10.1038/s41586-020-2591-3

    [5]

    LIU W C,HUANG W C. Influences of sea level rise on tides and storm surges around the Taiwan coast[J]. Continental Shelf Research,2018,173:9-13.

    [6]

    WILES E,GREEN A N,COOPER J A G. Rapid beachrock cementation on a South African beach:linking morphodynamics and cement style[J]. Sedimentary Geology,2018,378(10):13-18.

    [7]

    BONADUCE A,PINARDI N,ODDO P,et al. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges[J]. Climate Dynamics,2016,47(9/10):1-16.

    [8]

    CHEN X Y,ZHANG X B,CHURCH J A,et al. The increasing rate of global mean sea-level rise during 1993–2014[J]. Nature Climate Change,2017,7(7):492-495. doi: 10.1038/nclimate3325

    [9]

    CHURCH J A,WHITE N J. Sea-level rise from the late 19th to the early 21st Century[J]. Surveys in Geophysics,2011,32(4):585-602.

    [10]

    DEAN R G,HOUSTON J R. Recent sea level trends and accelerations:comparison of tide gauge and satellite results[J]. Coastal Engineering,2013,75(5):4-9.

    [11]

    刘振夏. 中国现代海平面变化及影响[J]. 海洋开发与管理,1991,8(3):17-20.

    [12]

    胡志博,郭金运,谭争光,等. 由TOPEX/Poseidon和验潮站监测香港海平面变化[J]. 大地测量与地球动力学,2014,34(4):56-59.

    [13]

    李大炜,李建成,团文征. 利用卫星测高与验潮站数据监测越南近海海平面变化[J]. 测绘通报,2017,1(6):1-4.

    [14]

    陆青,左军成,吴灵君. 热带太平洋海平面低频变化[J]. 海洋学报,2017,39(7):43-52.

    [15]

    汤超莲,游大伟,陈特固,等. 1986―2008年广东沿海海平面变化趋势[J]. 热带地理,2009,29(5):423-428.

    [16]

    余克服,陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘,2009,16(6):138-145.

    [17]

    ZONG Y Q. Mid-Holocene sea-level highstand along the Southeast Coast of China[J]. Quaternary International,2004,117(1):55-67. doi: 10.1016/S1040-6182(03)00116-2

    [18]

    XIONG H X,ZONG Y Q,PENG Q. Holocene sea-level history of the northern coast of South China Sea[J]. Quaternary Science Reviews,2018,194(15):12-26.

    [19]

    乐远福,唐立超,余克服. 北大西洋沿岸过去2 000年海平面变化的若干重要特征[J]. 海洋地质前沿,2022,38(6):1-15.

    [20]

    乐远福. 南海北部全新世以来海平面变化特征及未来趋势预测[J]. 海洋地质前沿,2023,39(2):1-16.

    [21]

    黄金森,朱袁智,沙庆安. 西沙群岛现代海滩岩岩石学初见[J]. 地质科学,1978,13(4):358-364.

    [22]

    李平日. 华南全新世海滩岩及其古地理意义[J]. 海洋地质与第四纪地质,1988,1(4):25-33.

    [23]

    王绍鸿. 福建全新世海滩岩及其地质意义[J]. 福建师范大学学报(自然科学版),1995,1(4):106-112.

    [24]

    赵希涛,沙庆安,冯文科. 海南岛全新世海滩岩[J]. 地质科学,1978,1(2):67-77,98,103-105.

    [25]

    朱长歧,周斌,刘海峰. 南海海滩岩的细观结构及其基本物理力学性质研究[J]. 岩石力学与工程学报,2015,34(4):683-693.

    [26]

    DARYONO L R,NAKASHIMA K,KAWASAKI S,et al. Sediment characteristics of beachrock:a baseline investigation based on microbial induced carbonate precipitation at Krakal-Sadranan Beach,Yogyakarta,Indonesia[J]. Applied Sciences,2020,10(2):520. doi: 10.3390/app10020520

    [27]

    FALKENROTH M,SCHNEIDER B,HOFFMANN G. Beachrock as sea-level indicator:a case study at the coastline of Oman (Indian Ocean)[J]. Quaternary Science Reviews,2019,206(15):81-98.

    [28]

    GASSE F,FONTES J C,CAMPO E V,et al. Holocene environmental changes in Bangong Co Basin (Western Tibet). Part 4:Discussion and conclusions[J]. Palaeogeography,1996,120(1/2):79-92.

    [29]

    孙金龙,徐辉龙. 中国的海滩岩研究与进展[J]. 热带海洋学报,2009,1(2):103-108.

    [30]

    詹文欢,刘以宣. 粤东沿海全新世海滩岩的特征及其所反映的海平面变化[J]. 热带海洋学报,1998,17(2):24-31.

    [31]

    YUE Y F, TANG L C, YU K F, et al. Coral reef records of sea-level highstand and climate events in northern South China Sea during the Mid-Holocene [J]. Unpublished.

    [32]

    张乔民,隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报,2001,16(1):28-36.

    [33]

    曾丽丽,施平,王东晓,等. 南海蒸发和净淡水通量的季节和年际变化[J]. 地球物理学报,2009,52(4):929-938.

    [34]

    WANG Y J,CHENG H,Edwards R L. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science,2007,308(5723):854-857.

    [35]

    刘秦玉,李薇,徐启春. 东北季风与南海海洋环流的相互作用[J]. 海洋与湖沼,1997,28(5):493-502.

    [36]

    XIAN L Z,FAN Q Y,ZENG G,et al. The variation of the low-level cross-equatorial flow over the South China Sea and its association with the East Asian summer monsoon in midsummer[J]. Journal of Tropical Meteorology,2018,34(3):339-346.

    [37]

    YUE Y F,YU K F,TAO S C,et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography,2019,521:57-71. doi: 10.1016/j.palaeo.2019.02.009

    [38]

    杨庆轩,梁鑫峰,田纪伟,等. 南海北部海流观测结果及其谱分析[J]. 海洋与湖沼,2008,39(6):561-568.

    [39]

    QI H E,WEI Z,WANG Y. Study on the sea currents in the northern shelf and slope of the South China Sea based on the observation[J]. Acta Oceanologica Sinica,2012,34(1):17-28.

    [40]

    郭忠信,杨天鸿,仇德忠. 冬季南海暖流及其右侧的西南向海流[J]. 热带海洋学报,1985,1(1):3-11.

    [41]

    毕福志,袁义申,尹云鹏. 广东海山岛晚全新世"海滩岩田"的沉积相及其海岸升降特征的研究[J]. 海洋地质与第四纪地质,1987,2(2):47-59.

    [42]

    毕福志,袁又申. 山东乳山海滩岩及其重要科学意义[J]. 现代地质,1991,1(2):85-91.

    [43]

    张明书. 关于海滩岩几个问题的初步研究[J]. 海洋地质与第四纪地质,1985,1(2):107-114.

    [44]

    王国忠. 南海珊瑚礁区沉积学 [M]. 北京: 海洋出版社, 2001: 1-336.

    [45]

    王雪木,陈万利,薛玉龙,等. 西沙群岛宣德环礁晚第四纪灰砂岛沉积地层[J]. 海洋地质与第四纪地质,2018,38(6):37-45.

    [46]

    孙志鹏,许红,王振峰,等. 西沙群岛海滩岩类型及其油气地质意义[J]. 海洋地质动态,2010,26(7):1-6.

    [47]

    YU K F,HUA Q,ZHAO J X,et al. Holocene marine C-14 reservoir age variability:evidence from Th-230-dated corals in the South China Sea[J]. Paleoceanography,2010,25(2):25-40.

    [48]

    FANG X Q,HOU G L. Synthetically reconstructed Holocene temperature change in China[J]. Scientia Geographica Sinica,2011,31(4):385-393.

    [49]

    STOULOS S,SAMARTZIDOU E,MANIATIS Y,et al. U-series geochronology using the spectrometry method cooperated with C-14 dating results[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(3):1837-1843. doi: 10.1007/s10967-018-6054-3

    [50]

    刘文会,余克服,王瑞,等. 涠洲岛北港海滩岩的铀系年代及其海平面指示意义[J]. 第四纪研究,2020,40(3):764-774.

    [51]

    YAN T L, YU K F, WANG R,et al. Records of sea-level highstand over the Meghalayan age/late Holocene from uranium-series ages of beachrock in Weizhou Island,northern South China Sea[J]. Holocene,2021,11/12(31):1745-1760.

    [52]

    梁文,黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究,2002,15(6):5-17.

    [53]

    杨红强,余克服. 微环礁的高分辨率海平面指示意义[J]. 第四纪研究,2015,35(2):354-362.

    [54]

    时小军,余克服,陈特固,等. 中—晚全新世高海平面的琼海珊瑚礁记录[J]. 海洋地质与第四纪地质,2008,28(5):1-9.

    [55]

    聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):511-514.

    [56]

    ENGELHART S E,HORTON B P,KEMP A C. Holocene sea-level changes along the United States' Atlantic Coast[J]. Oceanography,2011,24(2):70-79. doi: 10.5670/oceanog.2011.28

    [57]

    FRANCA A. Encyclopedia of modern coral reefs:structure,form and process[J]. Reference reviews,2011,25(8):39-40. doi: 10.1108/09504121111184480

    [58]

    SHENNAN I,PELTIER W R,DRUMMOND R,et al. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain[J]. Quaternary Science Reviews,2002,21(1-3):397-408. doi: 10.1016/S0277-3791(01)00091-9

    [59]

    毕福志,林耀光. 中国全新世海平面变化周期与世界未来海平面变化规律[J]. 第四纪研究,1991,11(1):43-54,99-100.

    [60]

    孙桂华,朱本铎. 南海及其周缘地区全新世海平面遗迹的构造含义[J]. 海洋学报,2009,31(5):58-68.

    [61]

    王为. 香港贝澳湾全新世海滩岩的发现及意义[J]. 科学通报,1993,38(3):258-260.

    [62]

    徐笑梅,高抒,周亮,等. 海南岛东北部海岸极端波浪事件沉积记录[J]. 海洋学报,2019,41(6):52-67.

    [63]

    詹文欢,刘以宣. 从广东沿海海滩岩探讨历史时期海平面变化[J]. 南海研究与开发,1996,1(4):30-25.

    [64]

    张崧,孙现领,王为,等. 广东深圳大鹏半岛海岸地貌特征[J]. 热带地理,2013,33(6):647-658.

    [65]

    张仲英,刘瑞华. 海南岛沿海的全新世[J]. 地理科学,1987,2:129-138,197.

    [66]

    宗永强,李平日. 粤东全新世海滩岩形成条件初步分析[J]. 热带地理,1984,4:15-22.

    [67]

    王建华. 华南沿海全新世海滩岩的特征及其意义[J]. 中山大学学报论丛,1992,1(1):111-122.

    [68]

    SHEN J W, LONG J P, PEDOJA K,et al. Holocene coquina beachrock from Haishan Island,east coast of Guangdong Province,China[J]. Quaternary International,2013,310(15):199-212.

    [69]

    STUIVIER M, REIMER P J. CALIB rev. 8. Radiocarbon, 1993, 35, 215-230.

    [70]

    HEATON T J,KHLER P,BUTZIN M,et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP)[J]. Radiocarbon,2020,62(4):779-820. doi: 10.1017/RDC.2020.68

    [71]

    YAO Y T, ZHAN W H, SUN J L,et al. Emerged fossil corals on the coast of northwestern Hainan Island,China:implications for mid-Holocene sea level change and tectonic uplift[J]. Chinese Science Bulletin,2013,58(23):2869-2876. doi: 10.1007/s11434-013-5692-7

    [72]

    ZONG Y Q, YIM W S, YU F, et al. Late Quaternary environmental changes in the Pearl River Mouth region,China[J]. Quaternary International,2009,206(1/2):35-45.

    [73]

    ZONG Y Q,INNES J B,WANG Z,et al. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands,China[J]. Quaternary Research,2011,76(1):69-82. doi: 10.1016/j.yqres.2011.03.005

    [74]

    CHEN J H, EDWARDS R L, WASSERBURG G J. 238U,234U and 232Th in seawater[J]. Earth Planetary Science Letters,1986,80(3/4):241-251.

    [75]

    STIRLING C H,ESAT T M,MCCULLOCH M T,et al. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial[J]. Earth Planetary Science Letters,1995,135(1/4):115-130.

    [76]

    朱照宇,邱燕,周厚云,等. 南海全球变化研究进展[J]. 地质力学学报,2002,8(4):315-322,324.

    [77]

    CHEN Y G, LIU T K. Sea Level Changes in the last several thousand years,Penghu Islands,Taiwan Strait[J]. Quaternary Research,1996,45(3):254-262. doi: 10.1006/qres.1996.0026

    [78]

    BAKER J L,LACHNIET M S,CHERVYATSOVA O,et al. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing[J]. Nature Geoscience,2017,10(6):430-435. doi: 10.1038/ngeo2953

    [79]

    XIONG H X,ZONG Y Q, HUANG G Q,et al. Sedimentary responses to Holocene sea-level change in a shallow marine environment of southern China[J]. Journal of Asian Earth Sciences,2018,166(10):95-106.

    [80]

    XIONG H X,ZONG Y Q,LI T,et al. Coastal GIA processes revealed by the early to middle Holocene sea-level history of East China[J]. Quaternary Science Reviews,2020,233(1):106249.

    [81]

    陈俊仁,陈欣树. 全新世海南省鹿回头海平面变化之研究[J]. 南海地质研究,1991,3:77-86.

    [82]

    BAKER R G V,HAWORTH R J. Smooth or oscillating late Holocene sea-level curve? Evidence from cross-regional statistical regressions of fixed biological indicators[J]. Marine Geology,2000,163(1):353-365.

    [83]

    刘嘉麒,倪云燕,储国强. 第四纪的主要气候事件[J]. 第四纪研究,2001,21(3):239-248.

    [84]

    RAJSHEKHAR C,REDDY P P. Late Quaternary beach rock formations of Andaman-Nicobar Islands,Bay of Bengal[J]. Journal of the Geological Society of India,2003,62(5):595-604.

    [85]

    CALDAS L,STATTEGGER K,VITAL H. Holocene sea-level history:evidence from coastal sediments of the northern Rio Grande do Norte coast,NE Brazil[J]. Marine Geology,2006,228(1/4):39-53.

    [86]

    BLAAUM M. Methods and code for "classical" age-modeling of radiocarbon sequences[J]. Quaternary Geochronology,2010,5(5):512-518. doi: 10.1016/j.quageo.2010.01.002

    [87]

    CRAIG H. Carbon 13 in Plants and the relationships between carbon 13 and carbon 14 variations in nature[J]. Journal of Geology,1954,62(2):115-149. doi: 10.1086/626141

    [88]

    MARTIN C W. Radiocarbon dating:recent applications and future potential[J]. Geoarchaeology-an International Journal,2010,14(4):371-373.

    [89]

    HALL B L,HENDERSON G M. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes:examples from Antarctica[J]. Earth and Planetary Science Letters,2001,193(3/4):565-577.

    [90]

    姜帆,刘俊文,黄志炯,等. 黑碳气溶胶的稳定和放射性碳同位素研究进展[J]. 科学通报,2020,65(35):109-120.

    [91]

    BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis,2011,6(3):657-674.

    [92]

    刘志杰,余佳,孙晓燕,等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究,2016,36(2):492-502.

    [93]

    余克服,赵建新,施祺,等. 永暑礁西南礁镯生物地貌与沉积环境[J]. 海洋地质与第四纪地质,2003,23(4):1-7.

    [94]

    陈以健,POLACH H. 沉积物中碳酸盐14C年龄的可靠性[J]. 海洋地质与第四纪地质,1987,2:133-141.

    [95]

    邓文峰,韦刚健,李献华. 有孔虫的高精度Mg/Ca比值的ICP-AES分析[J]. 海洋地质与第四纪地质,2005,25(2):147-151.

    [96]

    樊耘畅,丁旋,樊加恩,等. 东海陆架浙闽沿岸泥质区不同属种底栖有孔虫对14C测年的影响及其原因初探[J]. 第四纪研究,2018,38(3):792-798.

    [97]

    李建芬,苏盛伟,商志文,等. 渤海湾巨葛庄贝壳堤与下伏泥层有孔虫组合的海面变化意义[J]. 地质通报,2016,35(10):1584-1589.

    [98]

    STIRLING C H,ANDERSEN M B. Uranium-series dating of fossil coral reefs:extending the sea-level record beyond the Last Glacial cycle[J]. Earth Planetary Science Letters,2009,284(3/4):269-283.

    [99]

    ZHAO J X ,YU K F ,FENG Y X. High-precision 238U-234U-230Th disequilibrium dating of the recent past:a review[J]. Quaternary Geochronology,2009,4(5):423-433. doi: 10.1016/j.quageo.2009.01.012

    [100]

    BARD E,ARNOLD M,FAIRBANKS R G,et al. 230Th-234U and 14C ages obtained by mass spectrometry on corals[J]. Radiocarbon,1993,35:191-199. doi: 10.1017/S0033822200013886

    [101]

    EISENHAUER A,WASSERBURG G J,CHEN J H,et al. Holocene sea-level determination relative to the Australian continent:U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands[J]. Earth and Planetary Science Letters,1993,114:529-547. doi: 10.1016/0012-821X(93)90081-J

    [102]

    INGRAM B L,SOUTHON J R. Reservoir ages in eastern Pacific coastal and estuarine waters[J]. Radiocarbon,1996,38:573-582. doi: 10.1017/S0033822200030101

    [103]

    HUA Q,ULW S,Yu K F,et al. Temporal variability in the Holocene marine radiocarbon reservoir effect for the Tropical and South Pacific[J]. Quaternary Science Reviews,2020,249:106613. doi: 10.1016/j.quascirev.2020.106613

    [104]

    ZHAO J X, YU K F. Timing of Holocene sea-level highstands by mass spectrometric U-series ages of a coral reef from Leizhou Peninsula,South China Sea[J]. Chinese Science Bulletin,2002,47(4):348-352.

    [105]

    张培震,王琪,马宗晋. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘,2022,9(2):12.

    [106]

    ZHANG P,XIA H,XIA L. Thermal Ionization Mass Spec trometry (TIMS)-U-Series ages of corals from the South China Sea and Holocene high sea level[J]. Chinese Journal of Geochemisty,2003,22(2):133-139. doi: 10.1007/BF02831522

    [107]

    MA Z B,XIAO J,ZHAO X T,et al. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene[J]. Journal of Coastal Research,2003,19(2):296-303.

    [108]

    HO K S, CHEN J C, JUANG W. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area,southern China[J]. Journal of Asian Earth Sciences,2000,18(3):307-324. doi: 10.1016/S1367-9120(99)00059-0

    [109]

    LU R. Study on the modern crustal vertical movement in Guangdong coast[J]. South China Journal of Seismology,1997,17(1):25-33.

    [110]

    滕建彬,沈建伟,PEDOJA K. 深圳西冲湾的海蚀地貌与海滩沉积研究[J]. 现代地质,2007,21(3):511-517.

    [111]

    YU K F,LIU D S. High-frequency climatic oscillations recorded in a Holocene coral reef at Leizhou Peninsula,South China Sea[J]. Science in China Series D:Earth Sciences,2002,45(12):1057-1067. doi: 10.1360/02yd9103

    [112]

    詹文欢,朱照宇,姚衍桃,等. 南海西北部珊瑚礁记录所反映的新构造运动[J]. 第四纪研究,2006,26(1):77-84.

    [113]

    GISCHLER E,LOMANDO A J. Holocene cemented beach deposits in Belize[J]. Sedimentary Geology,1997,110(3):277-297.

    [114]

    KINDLER P,BAIN R J. Submerged upper Holocene beachrock on San Salvador Island,Bahamas:implications for recent sea-level history[J]. Geologische Rundschau,1993,82(2):241-247.

    [115]

    BOEYINGA J,DUSSELJEE D W,POOL A D G. The effect of beach rock formation on the morphological evolution of a beach. the case study of an eastern Mediterranean Beach:Ammoudara,Greece[J]. Journal of Coastal Research,2013,69(1):65-69.

    [116]

    何耀堂. 福建泉州湾全新世海滩岩特征及物源环境分析[J]. 福建地质,2014,33(2):112-118.

    [117]

    马克俭,冯应俊. 浙江沿海全新世海滩岩的沉积相及其意义[J]. 地震地质,1993,15(3):269-276.

    [118]

    孙奕映,WU P,黄光庆,等. 广东全新世海平面重建与冰川均衡调整模型结果的比较[J]. 第四纪研究,2015,35(2):281-290.

    [119]

    聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):1-7.

    [120]

    ZHANG Y,ZONG Y,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global and Planetary Change 2021,196,1033:69.

    [121]

    LAMBECK K,ROUBY H,PURCELL A,et al. Inaugural article by a recently elected academy member:sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(43):211-216.

    [122]

    汪汉胜,贾路路,PATRICK W,等. 末次冰期冰盖消融对东亚历史相对海平面的影响及意义[J]. 地球物理学报,2012,55(4):1144-1153.

    [123]

    BRADLEY S L,MILNE G A,TEFERLE F N,et al. Glacial isostatic adjustment of the British Isles:new constraints from GPS measurements of crustal motion[J]. Geophysical Journal International,2009,178:14-22. doi: 10.1111/j.1365-246X.2008.04033.x

    [124]

    BRADLEY S L,MILNE G A,SHENNAN I,et al. An improved glacial isostatic adjustment model for the British Isles[J]. Journal of Quaternary Science,2011,26(5):541-552. doi: 10.1002/jqs.1481

    [125]

    PELTIER W R. Global glacial isostasy and the surface of the ice-age earth:the ice-5g (vm2) model and grace[J]. Annual Review of Earth Planetary Sciences,2004,20(32):111-149.

    [126]

    TURCOTTE D L,BURKE K. Global sea-level changes and the thermal structure of the earth[J]. Earth Planetary Science Letters,1978,41(3):341-346. doi: 10.1016/0012-821X(78)90188-7

    [127]

    杨学祥. 地壳均衡与海平面变化[J]. 地球科学进展,1992,7(5):22-30.

    [128]

    WANG L. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156(1/4):245-284.

    [129]

    PELTIER W R,WU P,YUEN D. The Viscosities of the Earth's Mantle[J]. American Geophysical Union,2013,4:1-16.

    [130]

    ZONG Y,YANG Z,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global Planetary Change,2020,196:103369.

    [131]

    时小军,余克服,陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质,2007,27(5):121-132.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1597
  • PDF下载数:  82
  • 施引文献:  0
出版历程
收稿日期:  2022-02-21
刊出日期:  2023-03-28

目录