Application and uncertainty analysis of beachrock to Mid-late Holocene sea-level reconstruction in the northern South China Sea
-
摘要:
过去海平面变化特征对认识现代海平面变化过程和预估未来情景具有重要科学和现实意义。海滩岩作为热带和亚热带地区海岸潮间带特有的沉积岩,是海岸变迁和古海平面高程的重要标志物。然而,由于存在海滩岩形成后动力条件发生变化、采用的测年方法不同以及海平面高程估算和分析误差等问题,基于海滩岩的过去海平面重建结果依然存在较大争议和不确定性。我们分析和总结了南海北部中晚全新世海滩岩重建海平面的进展,以及在海平面研究中存在的问题和潜在机遇,从海滩岩的形成年代与海滩岩形成后高程产生变化等方面进一步量化研究海滩岩重建海平面变化的不确定性。同时,通过对南海北部海南岛东部沿岸的3块原生珊瑚礁(1块大型块状滨珊瑚和2块滨珊瑚微环礁)进行高精度高程测量和铀系测年,共获得6个海平面数据,结合冰川均衡调整模型(Glacial Isostatic Adjustment,GIA)和ICE-5G模型结果,对基于海滩岩重建的南海北部中晚全新世海平面的可靠性进行比较和评估。以上不确定性分析和研究结果表明,通过年代与高程校正后,海平面重建结果准确性进一步提高。研究结果可为以其他海平面标志物重建的过去海平面的不确定性分析和可靠性分析提供参考和借鉴。
Abstract:The characteristics of the past sea-level change have important scientific and practical significance for understanding the process of the modern sea-level change, and predicting future scenarios. Beachrock, as a unique sedimentary rock in coastal intertidal zones in tropical and subtropical regions, is an important indicator of coastal change and the past sea-level elevation. However, due to the change of dynamic conditions after the formation of beachrock, the different dating methods, the estimation of indicative range represented by beachrock and error analysis, the results of past sea-level reconstruction based on beachrock are still controversial and uncertain. Therefore, we analyze and summarize the progress of sea-level reconstruction of Mid-late Holocene based on beachrocks in the northern South China Sea, as well as the existing problems and potential opportunities in sea-level research. The uncertainty of sea-level reconstruction based on beachrock is further quantitatively studied from the aspects of the formation age of beachrock and the elevation change after the formation of beachrock . At the same time, the high-precision elevation measurement and U-Th dating of three in-situ coral reefs (one large massive Porites and two Porites microatolls) along the east coast of Hainan Island in the northern South China Sea were conducted, and six new sea-level data are obtained. In conjunction with Glacial Isostatic Adjustment (GIA) and ICE-5G model results, they were applied to the reliability analysis and comparison of the reconstructed Mid-late Holocene sea level in the north of the South China Sea based on beachrocks. The uncertainty analysis and results indicate that the accuracy of sea-level reconstruction result is further improved after the correction of age and elevation, which can provide reference for the uncertainty and reliability analysis of the reconstructed sea-level based on other sea-level indicators.
-
Key words:
- northern South China Sea /
- beachrock /
- Mid-late Holocene /
- sea-level change /
- uncertainty analysis
-
表 1 南海北部海南岛东部沿岸珊瑚样品的同位素数据和铀系年龄[31]
Table 1. The isotopic data and U-series ages of the coral samples from the eastern coast of Hainan Island, the northern South China Sea [31]
样本编号 U /
(μg/g)±2σ 232Th /
(ng/g)±2σ 230Th/ 232Th ±2σ 230Th/238U ±2σ 234U/ 238U ±2σ 年龄/
a BP±2σ 年龄/
cal a BP±2σ 校正后234U/ 238U值 ±2σ δ 234U/‰ ±2σ TGLC-001 3.151 6 0.002 8 5.825 6 0.006 1 91.39 0.16 0.055 68 0.000 09 1.146 5 0.001 6 5423 12 5375 27 1.148 8 0.001 6 148.8 1.6 TGLC-002 3.167 7 0.002 3 3.12 0.004 1 170.77 0.44 0.055 43 0.000 13 1.144 9 0.001 1 5406 14 5381 19 1.147 2 0.001 1 147.2 1.1 TGLC-003 3.013 0.002 3 2.314 7 0.002 8 151.47 0.43 0.038 35 0.000 1 1.147 6 0.001 6 3704 11 3684 15 1.149 1 0.001 6 149.1 1.6 TGLC-004 2.921 8 0.002 3.154 5 0.003 5 104.53 0.23 0.037 19 0.000 08 1.149 7 0.001 3 3584 9 3556 16 1.151 2 0.001 3 151.2 1.3 QGC-001 2.912 6 0.001 3 2.150 5 0.002 3 225.62 0.46 0.054 9 0.000 1 1.147 1 0.001 1 5343 11 5324 15 1.149 3 0.001 1 149.3 1.1 QGC-002 2.820 7 0.002 2 1.022 1 0.001 3 464.19 1.05 0.055 43 0.000 11 1.1475 0.0013 5394 13 5385 14 1.149 8 0.001 3 149.8 1.3 注:表内数据源自文献[31]。 表 2 南海北部海滩岩记录的过去海平面变化信息(14C测年)[22, 25, 59-68]
Table 2. The past sea-level change recorded by beachrock in the northern South China Sea (14C dating) [22, 25, 59-68]
区域 点位 样品编号 纬度/(N) 经度/(E) 未校正年龄/
a BP±2σ 误差 海平面高程/cm 校正后年龄a/
cal a BP构造抬升高程b/cm 校正后的海平面高程c/cm 数据来源 下限年龄 上限年龄 中值年龄 珠三角 深圳西冲 西冲砂堤 25°07' 104°06' 2 179 85 250 1 357 1 617 1 497 3.29 246.71 [64] 珠三角 惠州碧甲 亚妈庙沙堤 25°11' 119°16' 2 415 80 200 1 627 1 905 1 771 3.90 196.10 [64] 粤东 汕头大屿山 贝澳湾内沙堤 23°02'—23°38' 116°14'—117°19' 2 820 95 170 2 104 2 431 2 271 4.54 165.46 [64] 粤东 汕头大屿山 贝澳湾内沙堤 23°02'—23°38' 116°14'—117°19' 2 380 90 50 1 578 1 870 1 729 3.46 46.54 [64] 粤东 汕头大屿山 贝澳湾内沙堤 23°02'—23°38' 116°14'—117°19' 1 700 80 −4 889 1 136 1 004 2.01 −6.01 [64] 粤东 汕头大屿山 贝澳湾内沙堤 23°02'—23°38' 116°14'—117°19' 1 660 75 80 833 1 078 962 1.92 78.08 [64] 粤东 汕头大屿山 长沙湾海滩 23°02'—23°38' 116°14'—117°19' 1 300 60 0 524 693 617 1.23 −1.23 [64] 粤西 茂名电白 茂名电白 21°29' 110°53' 5 520 130 100 5 351 5 721 5 545 11.09 88.91 [60] 粤东 潮州饶平 潮州饶平 23°28'—24°14' 116°35'—117°11' 5 160 100 150 4 950 5 304 5 129 10.26 139.74 [60] 北部湾 广西涠洲岛 涠洲岛 21°02' 109°06' 6 000 100 600 5 909 6 216 6 064 12.13 587.87 [60] 海南岛 乐东莺歌海 莺歌海 19°11' 110°57' 5 995 95 0 5 908 6 207 6 059 21.21 −21.21 [60] 粤东 汕头河浦 KWG-310 23°26' 116°60' 3 320 100 500 2 734 3 033 2 889 5.78 494.22 [66] 粤东 汕头澄海 KWG-440 23°46' 116°75' 2 485 70 250 1 721 1 981 1 855 3.71 246.29 [66] 粤东 惠州惠东 平海岭头 22°98' 114°72' 2 415 85 200 1 623 1 910 1 771 3.54 196.46 [66] 珠三角 深圳西冲 KWG-209 25°07' 104°06' 2 170 85 150 1 350 1 607 1 488 3.27 146.73 [66] 粤东 汕头南澳 KWG-307 23°42' 117°02' 1 990 80 350 1 171 1 411 1 299 2.60 347.40 [66] 粤东 汕头南澳 2-① 23°42' 117°02' 3 230 100 251 2 631 2 946 2 781 5.56 245.44 [63] 粤东 汕头南澳 2-② 23°42' 117°02' 3 460 100 254 2 884 3 206 3 052 6.10 247.90 [63] 粤东 潮州饶平 1-⑤ 23°28'—24°14' 116°35'—117°11' 3 050 100 88 2 407 2 711 2 555 5.11 82.89 [63] 粤东 潮州饶平 1-④ 23°28'—24°14' 116°35'—117°11' 3 260 95 69 2 680 2 973 2 818 5.64 63.36 [63] 粤东 潮州饶平 1-③ 23°28'—24°14' 116°35'—117°11' 3 500 100 15 2 935 3 259 3 100 6.20 8.80 [63] 粤东 潮州饶平 1-② 23°28'—24°14' 116°35'—117°11' 3 670 105 −28 3 144 3 466 3 306 6.61 −34.61 [63] 粤东 潮州饶平 1-① 23°28'—24°14' 116°35'—117°11' 3 880 120 −104 3 382 3 739 3 569 7.14 −111.14 [63] 珠三角 江门台山 海晏公角 22°15' 112°48' 3 910 110 127 3 434 3 774 3 605 7.93 119.07 [63] 珠三角 江门台山 海晏公角 22°15' 112°48' 3 600 100 52 3 063 3 378 3 221 7.09 44.91 [63] 珠三角 江门台山 海晏公角 22°15' 112°48' 2 560 95 360 1 793 2 105 1 949 4.29 355.71 [63] 珠三角 深圳西冲 深圳大鹏西冲 25°07' 104°06' 2 485 85 250 1 707 1 992 1 856 4.08 245.92 [63] 雷州半岛 雷州半岛南部 雷州半岛南部 20°91' 110°09' 1 040 65 100 306 492 398 1.39 98.61 [63] 海南岛 三亚大东海 三亚大东海 18°19' 109°28' 5 450 190 60 5 230 5 726 5 462 19.12 40.88 [22] 海南岛 乐东莺歌海 乐东莺歌海 19°11' 110°57' 4 365 85 100 4 051 4 368 4 197 14.69 85.31 [22] 海南岛 三亚鹿回头 鹿回头水尾岭 18°21' 109°49' 4 345 210 200 3 863 4 453 4 169 14.59 185.41 [22] 海南岛 三亚东瑁岛 东瑁岛东岸 18°09'—18°37' 108°56'—109°48' 3 865 85 230 3 398 3 685 3 548 12.42 217.58 [22] 海南岛 三亚东瑁岛 东瑁岛西岸 18°09'—18°37' 108°56'—109°48' 3 810 85 200 3 342 3 625 3 482 12.19 187.81 [22] 海南岛 三亚鹿回头 鹿回头水尾岭 18°21' 109°49' 3 630 190 400 2 989 3 499 3 257 11.40 388.60 [22] 粤东 揭阳惠来 惠来龙江新开河 22°53'—23°46' 115°36'—116°37' 3 290 110 0 2 700 3 021 2 854 6.28 −6.28 [22] 海南岛 三亚马岭 三亚马岭 18°09'—18°37' 108°56'—109°48' 2 630 75 0 1 886 2 169 2 036 7.13 −7.13 [22] 海南岛 临高美夏 临高美夏 19°34'—20°20' 109°03'—109°53' 2 160 90 0 1 339 1 602 1 478 5.17 −5.17 [22] 海南岛 文昌烟墩 烟墩二公滩 19°20'—20°10' 108°21'—111°03' 1 890 90 300 1 062 1 309 1 192 4.17 295.83 [22] 粤西 阳江海陵 海陵劳元 21°28'—22°41' 111°16'—112°21' 1 650 70 220 826 1063 951 2.09 217.91 [22] 海南岛 三亚小东海 三亚小东海 18°09'—18°37' 108°56'—109°48' 1 190 70 0 449 630 531 1.86 −1.86 [22] 海南岛 东方八所 东方八所 18°43'—19°38' 108°36'—109°07' 1 020 90 0 277 496 378 1.32 −1.32 [22] 海南岛 乐东九所 乐东九所 18°43'—19°38' 108°36'—109°07' 1 020 90 0 277 496 378 1.32 −1.32 [22] 海南岛 三亚鹿回头 31 18°21' 109°49' 3 750 190 300 3 154 3 673 3 409 11.93 288.07 [65] 海南岛 文昌烟墩 45 19°20'—20°10' 108°21'—111°03' 2 054 109 100 1 235 1 519 1 369 4.79 95.21 [65] 海南岛 文昌烟墩 58 19°20'—20°10' 108°21'—111°03' 1 020 80 400 284 489 380 1.33 398.67 [65] 海南岛 三亚海头 9 18°09'—18°37' 108°56'—109°48' 4 439 132 0 4 087 4 499 4 292 15.02 −15.02 [67] 海南岛 三亚天涯海角 13 18°29' 109°34' 4 170 140 60 3 715 4 146 3 940 13.79 46.21 [67] 海南岛 三亚天涯海角 17 18°29' 109°34' 3 844 109 200 3 358 3 687 3 525 12.34 187.66 [67] 海南岛 三亚天涯海角 29 18°29' 109°34' 3 333 114 0 2 736 3 063 2 906 10.17 −10.17 [67] 海南岛 三亚大东海 51 18°19' 109°28' 2 360 90 50 1 550 1 840 1 705 5.97 44.03 [67] 海南岛 三亚大东海 54 18°19' 109°28' 2 325 75 0 1 530 1 790 1 662 5.82 −5.82 [67] 海南岛 文昌烟墩 55 19°20'—20°10' 108°21'—111°03' 2 212 132 50 1 359 1 700 1 540 5.39 44.61 [67] 海南岛 临高龙豪 57 19°34'—20°20' 109°03'—109°53' 2 141 81 0 1 325 1 570 1 457 5.10 −5.10 [67] 海南岛 儋州排浦 67 19°63' 109°16' 1 087 86 0 321 535 438 1.53 −1.53 [67] 珠三角 香港贝澳 香港贝澳 22°32' 114°17' 1 700 80 150 889 1 136 1 004 2.21 147.79 [61] 海南岛 西沙东岛 西沙东岛 16°33' 112°02' 3 630 150 - 3 040 3 460 3 256 - - [22] 海南岛 西沙东岛 西沙东岛 16°33' 112°02' 3 250 120 - 2 637 2 994 2 806 - - [22] 海南岛 西沙群岛 永兴岛西北 16°50' 112°20' 2 760 90 - 2 040 2 338 2 195 - - [63] 粤东 汕头广澳 汕头广澳 23°22' 116°78' 1 725 125 - 881 1 192 1 028 - - [59] 粤东 汕头广澳 汕头广澳 23°22' 116°78' 2 725 125 - 1 966 2 334 2 154 - - [59] 粤东 汕头广澳 汕头广澳 23°22' 116°78' 3 225 125 - 2 590 2 965 2 773 - - [59] 粤东 潮州海山岛 潮州海山岛 23°41' 116°59' 1 725 125 - 881 1 192 1 028 - - [59] 粤东 潮州海山岛 潮州海山岛 23°41' 116°59' 2 725 125 - 1 966 2 334 2 154 - - [59] 粤东 潮州海山岛 潮州海山岛 23°41' 116°59' 3 225 125 - 2 590 2 965 2 773 - - [59] 粤东 潮州海山岛 潮州海山岛 23°41' 116°59' 3 725 125 - 3192 3560 3 376 - - [59] 珠三角 香港贝澳 香港贝澳 22°32' 114°17' 1 610 70 - 785 1 018 907 - - [61] 海南岛 西沙东岛 7 16°33' 112°02' 4 856 200 - 4 547 5 111 4 830 - - [67] 海南岛 西沙东岛 26 16°33' 112°02' 3 417 136 - 2 803 3 183 3 004 - - [67] 海南岛 西沙东岛 27 16°33' 112°02' 3 378 133 - 2 765 3 133 2 959 - - [67] 海南岛 海南抱虎港 碎屑上层 19°20'—20°10' 108°21'—111°03' 3 340 30 - 2 782 2 993 2 902 - - [62] 海南岛 海南抱虎港 粗砂层 19°20'—20°10' 108°21'—111°03' 3 400 30 - 2 855 3 080 2 975 - - [62] 海南岛 海南抱虎港 碎屑下层 19°20'—20°10' 108°21'—111°03' 3 510 30 - 2 997 3 225 3 114 - - [62] 海南岛 西沙群岛
广金岛GJ 16°27' 111°42' 1 850 30 - 1 070 1 251 1 156 - - [25] 海南岛 西沙群岛
永兴岛YX 16°50' 112°20' 1 250 30 - 509 646 578 - - [25] 海南岛 三亚鹿回头 LH 18°21' 109°49' 3 160 30 - 2 588 2 799 2 695 - - [25] 粤东 潮州海山岛 Bed-12 23°41' 116°59' 2 910 30 - 2 284 2 514 2 395 - - [68] 粤东 潮州海山岛 Bed-10 23°41' 116°59' 3 530 30 - 3 024 3 252 3 140 - - [68] 粤东 潮州海山岛 Bed-5 23°41' 116°59' 3 720 30 - 3 259 3 464 3 370 - - [68] a:对表2中的原始数据(即未校正的数据),使用最新的CALIB 8.0重新校正。使用海洋校正曲线Marine 20,并考虑北半球碳库效应与区域海洋碳库校正值。5000 a BP之前的区域海洋碳库效应年龄偏差δR为(151±85) a,之后的为(89±59) a。b:考虑南海北部构造作用的影响,本文以平均速率0.035 mm/a计算雷琼区域海平面受构造抬升运动的影响,珠江三角洲的构造抬升速率为0.022 mm/a,北部湾及其他地区的构造抬升速率为0.020 mm/a。c:RSL=A-TUE, A为原海平面高程,TUE为平均构造抬升高程,RSL为校正后海平面高程。 表 3 南海北部海滩岩和新增珊瑚样品记录的过去海平面变化信息(铀系测年)[31, 51]
Table 3. The past sea-level change recorded by beachrock and the newly added coral samples in the northern South China Sea (U-series dating) [31, 51]
区域 点位 样品编号 标志物 纬度/
(°N)经度/
(°E)校正后234U/ 238U值 ±2σ δ 234U/
‰±2σ 未校正年龄/
a BP±2σ 校正后年龄/
cal a BP±2σ 日历年龄
(距1950年年龄)/
cal a BP±2σ 海平面高程/cm 误差 数据来源 北部湾 涠洲岛 The 7th layer of BG 海滩岩 21°04' 109°06' 1.147 2 0.6 147.2 0.6 928 10 913 12 845 12 100.3 35 [51] 北部湾 涠洲岛 The 6th layer of BG 海滩岩 21°04' 109°06' 1.147 1 0.6 147.1 0.6 866 13 836 20 768 20 100.6 35 [51] 北部湾 涠洲岛 The 4th layer of BG 海滩岩 21°04' 109°06' 1.148 4 1.5 148.4 1.5 1457 22 1342 62 1274 62 98.8 35 [51] 北部湾 涠洲岛 The 1th layer of BG 海滩岩 21°04' 109°06' 1.144 1.5 144.0 1.5 1844 26 1780 42 1712 42 97.3 35 [51] 北部湾 涠洲岛 The 4th layer of GSB 海滩岩 21°03' 109°08' 1.146 8 1.6 146.8 1.6 1880 26 1834 35 1766 35 103.1 35 [51] 北部湾 涠洲岛 The 2th layer of GSB 海滩岩 21°03' 109°08' 1.146 5 1.7 146.5 1.7 1771 25 1760 26 1692 26 103.3 35 [51] 北部湾 涠洲岛 The 1th layer of GSB 海滩岩 21°03' 109°08' 1.1456 1.3 145.6 1.3 1358 19 1337 21 1269 21 104.8 35 [51] 北部湾 涠洲岛 The 2th layer of HL-I 海滩岩 21°02' 109°08' 1.146 1 0.8 146.1 0.8 1490 15 1443 28 1375 28 94.4 35 [51] 北部湾 涠洲岛 The 1th layer of HL-I 海滩岩 21°02' 109°08' 1.146 0.7 146.0 0.7 1572 13 1561 14 1493 14 94.0 35 [51] 北部湾 涠洲岛 The 4th layer of HL-II 海滩岩 21°02' 109°08' 1.147 3 0.8 147.3 0.8 706 13 701 13 633 13 97.0 35 [51] 北部湾 涠洲岛 The 3th layer of HL-II 海滩岩 21°02' 109°08' 1.146 0.7 146.0 0.7 1468 14 1441 19 1373 19 94.4 35 [51] 北部湾 涠洲岛 The 2th layer of HL-II 海滩岩 21°02' 109°08' 1.146 0.7 146.0 0.7 1411 19 1405 19 1337 19 94.6 35 [51] 北部湾 涠洲岛 The 4th layer of HL-III 海滩岩 21°02' 109°08' 1.147 2 0,8 147.2 0,8 774 12 694 41 626 41 97.1 35 [51] 北部湾 涠洲岛 The 3th layer of HL-III 海滩岩 21°02' 109°08' 1.147 6 0.7 147.6 0.7 683 8 672 10 604 10 97.1 35 [51] 海南岛 铜鼓岭 TGLC-001 珊瑚 19°63' 111°02' 1.148 8 1.6 148.8 1.6 5423 12 5375 27 5304 27 200.2 9.8 [31] 海南岛 铜鼓岭 TGLC-002 珊瑚 19°63' 111°02' 1.1472 1.1 147.2 1.1 5406 14 5381 19 5310 19 198.5 9.8 [31] 海南岛 铜鼓岭 TGLC-003 珊瑚 19°64' 111°01' 1.149 1 1.6 149.1 1.6 3704 11 3684 15 3613 15 183.4 9.8 [31] 海南岛 铜鼓岭 TGLC-004 珊瑚 19°64' 111°01' 1.151 2 1.3 151.2 1.3 3584 19 3556 16 3485 16 162.5 9.8 [31] 海南岛 青葛 QGC-001 珊瑚 19°31' 110°66' 1.149 3 1.1 149.3 1.1 5343 11 5324 15 5253 15 208.4 9.8 [31] 海南岛 青葛 QGC-002 珊瑚 19°31' 110°66' 1.149 8 1.3 149.8 1.3 5394 13 5385 14 5314 14 209.5 9.8 [31] 表 4 选取的指示南海北部过去海平面的海滩岩和珊瑚礁数据(校正前)
Table 4. Selected beachrocks and corals indicating the ancient sea-level in the northern South China Sea(before correction)
序号 区域 点位 样品编号 测年方法 未校正年龄
/a BP±2σ 误差 海平面高程
/cm误差 1 珠三角 惠州碧甲 亚妈庙沙堤 14C测年 2 415 80 196.10 10.0 2 粤东 汕头大屿山 贝澳湾内沙堤 14C测年 1 660 75 78.08 10.0 3 粤东 潮州饶平 潮州饶平 14C测年 5 160 100 139.74 10.0 4 粤东 惠州惠东 平海岭头 14C测年 2 415 85 196.46 12.0 5 珠三角 深圳西冲 KWG-209 14C测年 2 170 85 146.73 12.0 6 珠三角 江门台山 海晏公角 14C测年 3 910 110 119.07 10.0 7 雷州半岛 雷州半岛南部 雷州半岛南部 14C测年 1 040 65 98.61 10.0 8 海南岛 三亚东瑁岛 东瑁岛西岸 14C测年 3 810 85 187.81 10.0 9 海南岛 三亚天涯海角 17 14C测年 3 844 109 187.66 10.0 10 珠三角 香港贝澳 香港贝澳 14C测年 1 700 80 147.79 10.0 11 北部湾 涠洲岛 The 7th layer of BG 铀系测年 845 12 100.3 35.0 12 北部湾 涠洲岛 The 6th layer of BG 铀系测年 768 20 100.6 35.0 13 北部湾 涠洲岛 The 4th layer of BG 铀系测年 1 274 62 98.8 35.0 14 北部湾 涠洲岛 The 1th layer of BG 铀系测年 1 712 42 97.3 35.0 15 北部湾 涠洲岛 The 4th layer of GSB 铀系测年 1 766 35 103.1 35.0 17 北部湾 涠洲岛 The 2th layer of GSB 铀系测年 1 692 26 103.3 35.0 18 北部湾 涠洲岛 The 1th layer of GSB 铀系测年 1 269 21 104.8 35.0 19 北部湾 涠洲岛 The 2th layer of HL-I 铀系测年 1 375 28 94.4 35.0 20 北部湾 涠洲岛 The 1th layer of HL-I 铀系测年 1493 14 94.0 35.0 21 北部湾 涠洲岛 The 4th layer of HL-II 铀系测年 633 13 97.0 35.0 22 北部湾 涠洲岛 The 3th layer of HL-II 铀系测年 1 373 19 94.4 35.0 23 北部湾 涠洲岛 The 2th layer of HL-II 铀系测年 1 337 19 94.6 35.0 24 北部湾 涠洲岛 The 4th layer of HL-III 铀系测年 626 41 97.1 35.0 25 北部湾 涠洲岛 The 3th layer of HL-III 铀系测年 604 10 97.1 35.0 26 海南岛 铜鼓岭 TGLC-001 铀系测年 5 304 27 200.2 9.8 27 海南岛 铜鼓岭 TGLC-002 铀系测年 5 310 19 198.5 9.8 28 海南岛 铜鼓岭 TGLC-003 铀系测年 3 613 15 183.4 9.8 29 海南岛 铜鼓岭 TGLC-004 铀系测年 3 485 16 162.5 9.8 30 海南岛 青葛 QGC-001 铀系测年 5 253 15 208.4 9.8 31 海南岛 青葛 QGC-002 铀系测年 5 314 14 209.5 9.8 -
[1] KOPP R E,KEMP A C,BITTERMANN K,et al. Temperature-driven global sea-level variability in the Common Era[J]. PNAS,2016,113(11):E1434.
[2] WEBSTER J M,GEORGE N P J,BEAMAN R J,et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope:a mechanism for generating tsunamis on the north-east Australian coast?[J]. Marine Geology,2015,371(1):120-129.
[3] ZHANG Y Z,XIE J Z,LIU L. Investigating sea-level change and its impact on Hong Kong's coastal environment[J]. Geographic Information Sciences,2011,17(2):105-112.
[4] FREDERIKSE T, LANDERER F,CARON L,et al. The causes of sea-level rise since 1900[J]. Nature,2020,584(7821):393-397. doi: 10.1038/s41586-020-2591-3
[5] LIU W C,HUANG W C. Influences of sea level rise on tides and storm surges around the Taiwan coast[J]. Continental Shelf Research,2018,173:9-13.
[6] WILES E,GREEN A N,COOPER J A G. Rapid beachrock cementation on a South African beach:linking morphodynamics and cement style[J]. Sedimentary Geology,2018,378(10):13-18.
[7] BONADUCE A,PINARDI N,ODDO P,et al. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges[J]. Climate Dynamics,2016,47(9/10):1-16.
[8] CHEN X Y,ZHANG X B,CHURCH J A,et al. The increasing rate of global mean sea-level rise during 1993–2014[J]. Nature Climate Change,2017,7(7):492-495. doi: 10.1038/nclimate3325
[9] CHURCH J A,WHITE N J. Sea-level rise from the late 19th to the early 21st Century[J]. Surveys in Geophysics,2011,32(4):585-602.
[10] DEAN R G,HOUSTON J R. Recent sea level trends and accelerations:comparison of tide gauge and satellite results[J]. Coastal Engineering,2013,75(5):4-9.
[11] 刘振夏. 中国现代海平面变化及影响[J]. 海洋开发与管理,1991,8(3):17-20.
[12] 胡志博,郭金运,谭争光,等. 由TOPEX/Poseidon和验潮站监测香港海平面变化[J]. 大地测量与地球动力学,2014,34(4):56-59.
[13] 李大炜,李建成,团文征. 利用卫星测高与验潮站数据监测越南近海海平面变化[J]. 测绘通报,2017,1(6):1-4.
[14] 陆青,左军成,吴灵君. 热带太平洋海平面低频变化[J]. 海洋学报,2017,39(7):43-52.
[15] 汤超莲,游大伟,陈特固,等. 1986―2008年广东沿海海平面变化趋势[J]. 热带地理,2009,29(5):423-428.
[16] 余克服,陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘,2009,16(6):138-145.
[17] ZONG Y Q. Mid-Holocene sea-level highstand along the Southeast Coast of China[J]. Quaternary International,2004,117(1):55-67. doi: 10.1016/S1040-6182(03)00116-2
[18] XIONG H X,ZONG Y Q,PENG Q. Holocene sea-level history of the northern coast of South China Sea[J]. Quaternary Science Reviews,2018,194(15):12-26.
[19] 乐远福,唐立超,余克服. 北大西洋沿岸过去2 000年海平面变化的若干重要特征[J]. 海洋地质前沿,2022,38(6):1-15.
[20] 乐远福. 南海北部全新世以来海平面变化特征及未来趋势预测[J]. 海洋地质前沿,2023,39(2):1-16.
[21] 黄金森,朱袁智,沙庆安. 西沙群岛现代海滩岩岩石学初见[J]. 地质科学,1978,13(4):358-364.
[22] 李平日. 华南全新世海滩岩及其古地理意义[J]. 海洋地质与第四纪地质,1988,1(4):25-33.
[23] 王绍鸿. 福建全新世海滩岩及其地质意义[J]. 福建师范大学学报(自然科学版),1995,1(4):106-112.
[24] 赵希涛,沙庆安,冯文科. 海南岛全新世海滩岩[J]. 地质科学,1978,1(2):67-77,98,103-105.
[25] 朱长歧,周斌,刘海峰. 南海海滩岩的细观结构及其基本物理力学性质研究[J]. 岩石力学与工程学报,2015,34(4):683-693.
[26] DARYONO L R,NAKASHIMA K,KAWASAKI S,et al. Sediment characteristics of beachrock:a baseline investigation based on microbial induced carbonate precipitation at Krakal-Sadranan Beach,Yogyakarta,Indonesia[J]. Applied Sciences,2020,10(2):520. doi: 10.3390/app10020520
[27] FALKENROTH M,SCHNEIDER B,HOFFMANN G. Beachrock as sea-level indicator:a case study at the coastline of Oman (Indian Ocean)[J]. Quaternary Science Reviews,2019,206(15):81-98.
[28] GASSE F,FONTES J C,CAMPO E V,et al. Holocene environmental changes in Bangong Co Basin (Western Tibet). Part 4:Discussion and conclusions[J]. Palaeogeography,1996,120(1/2):79-92.
[29] 孙金龙,徐辉龙. 中国的海滩岩研究与进展[J]. 热带海洋学报,2009,1(2):103-108.
[30] 詹文欢,刘以宣. 粤东沿海全新世海滩岩的特征及其所反映的海平面变化[J]. 热带海洋学报,1998,17(2):24-31.
[31] YUE Y F, TANG L C, YU K F, et al. Coral reef records of sea-level highstand and climate events in northern South China Sea during the Mid-Holocene [J]. Unpublished.
[32] 张乔民,隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报,2001,16(1):28-36.
[33] 曾丽丽,施平,王东晓,等. 南海蒸发和净淡水通量的季节和年际变化[J]. 地球物理学报,2009,52(4):929-938.
[34] WANG Y J,CHENG H,Edwards R L. The Holocene Asian monsoon:links to solar changes and North Atlantic climate[J]. Science,2007,308(5723):854-857.
[35] 刘秦玉,李薇,徐启春. 东北季风与南海海洋环流的相互作用[J]. 海洋与湖沼,1997,28(5):493-502.
[36] XIAN L Z,FAN Q Y,ZENG G,et al. The variation of the low-level cross-equatorial flow over the South China Sea and its association with the East Asian summer monsoon in midsummer[J]. Journal of Tropical Meteorology,2018,34(3):339-346.
[37] YUE Y F,YU K F,TAO S C,et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography,2019,521:57-71. doi: 10.1016/j.palaeo.2019.02.009
[38] 杨庆轩,梁鑫峰,田纪伟,等. 南海北部海流观测结果及其谱分析[J]. 海洋与湖沼,2008,39(6):561-568.
[39] QI H E,WEI Z,WANG Y. Study on the sea currents in the northern shelf and slope of the South China Sea based on the observation[J]. Acta Oceanologica Sinica,2012,34(1):17-28.
[40] 郭忠信,杨天鸿,仇德忠. 冬季南海暖流及其右侧的西南向海流[J]. 热带海洋学报,1985,1(1):3-11.
[41] 毕福志,袁义申,尹云鹏. 广东海山岛晚全新世"海滩岩田"的沉积相及其海岸升降特征的研究[J]. 海洋地质与第四纪地质,1987,2(2):47-59.
[42] 毕福志,袁又申. 山东乳山海滩岩及其重要科学意义[J]. 现代地质,1991,1(2):85-91.
[43] 张明书. 关于海滩岩几个问题的初步研究[J]. 海洋地质与第四纪地质,1985,1(2):107-114.
[44] 王国忠. 南海珊瑚礁区沉积学 [M]. 北京: 海洋出版社, 2001: 1-336.
[45] 王雪木,陈万利,薛玉龙,等. 西沙群岛宣德环礁晚第四纪灰砂岛沉积地层[J]. 海洋地质与第四纪地质,2018,38(6):37-45.
[46] 孙志鹏,许红,王振峰,等. 西沙群岛海滩岩类型及其油气地质意义[J]. 海洋地质动态,2010,26(7):1-6.
[47] YU K F,HUA Q,ZHAO J X,et al. Holocene marine C-14 reservoir age variability:evidence from Th-230-dated corals in the South China Sea[J]. Paleoceanography,2010,25(2):25-40.
[48] FANG X Q,HOU G L. Synthetically reconstructed Holocene temperature change in China[J]. Scientia Geographica Sinica,2011,31(4):385-393.
[49] STOULOS S,SAMARTZIDOU E,MANIATIS Y,et al. U-series geochronology using the spectrometry method cooperated with C-14 dating results[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(3):1837-1843. doi: 10.1007/s10967-018-6054-3
[50] 刘文会,余克服,王瑞,等. 涠洲岛北港海滩岩的铀系年代及其海平面指示意义[J]. 第四纪研究,2020,40(3):764-774.
[51] YAN T L, YU K F, WANG R,et al. Records of sea-level highstand over the Meghalayan age/late Holocene from uranium-series ages of beachrock in Weizhou Island,northern South China Sea[J]. Holocene,2021,11/12(31):1745-1760.
[52] 梁文,黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究,2002,15(6):5-17.
[53] 杨红强,余克服. 微环礁的高分辨率海平面指示意义[J]. 第四纪研究,2015,35(2):354-362.
[54] 时小军,余克服,陈特固,等. 中—晚全新世高海平面的琼海珊瑚礁记录[J]. 海洋地质与第四纪地质,2008,28(5):1-9.
[55] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):511-514.
[56] ENGELHART S E,HORTON B P,KEMP A C. Holocene sea-level changes along the United States' Atlantic Coast[J]. Oceanography,2011,24(2):70-79. doi: 10.5670/oceanog.2011.28
[57] FRANCA A. Encyclopedia of modern coral reefs:structure,form and process[J]. Reference reviews,2011,25(8):39-40. doi: 10.1108/09504121111184480
[58] SHENNAN I,PELTIER W R,DRUMMOND R,et al. Global to local scale parameters determining relative sea-level changes and the post-glacial isostatic adjustment of Great Britain[J]. Quaternary Science Reviews,2002,21(1-3):397-408. doi: 10.1016/S0277-3791(01)00091-9
[59] 毕福志,林耀光. 中国全新世海平面变化周期与世界未来海平面变化规律[J]. 第四纪研究,1991,11(1):43-54,99-100.
[60] 孙桂华,朱本铎. 南海及其周缘地区全新世海平面遗迹的构造含义[J]. 海洋学报,2009,31(5):58-68.
[61] 王为. 香港贝澳湾全新世海滩岩的发现及意义[J]. 科学通报,1993,38(3):258-260.
[62] 徐笑梅,高抒,周亮,等. 海南岛东北部海岸极端波浪事件沉积记录[J]. 海洋学报,2019,41(6):52-67.
[63] 詹文欢,刘以宣. 从广东沿海海滩岩探讨历史时期海平面变化[J]. 南海研究与开发,1996,1(4):30-25.
[64] 张崧,孙现领,王为,等. 广东深圳大鹏半岛海岸地貌特征[J]. 热带地理,2013,33(6):647-658.
[65] 张仲英,刘瑞华. 海南岛沿海的全新世[J]. 地理科学,1987,2:129-138,197.
[66] 宗永强,李平日. 粤东全新世海滩岩形成条件初步分析[J]. 热带地理,1984,4:15-22.
[67] 王建华. 华南沿海全新世海滩岩的特征及其意义[J]. 中山大学学报论丛,1992,1(1):111-122.
[68] SHEN J W, LONG J P, PEDOJA K,et al. Holocene coquina beachrock from Haishan Island,east coast of Guangdong Province,China[J]. Quaternary International,2013,310(15):199-212.
[69] STUIVIER M, REIMER P J. CALIB rev. 8. Radiocarbon, 1993, 35, 215-230.
[70] HEATON T J,KHLER P,BUTZIN M,et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP)[J]. Radiocarbon,2020,62(4):779-820. doi: 10.1017/RDC.2020.68
[71] YAO Y T, ZHAN W H, SUN J L,et al. Emerged fossil corals on the coast of northwestern Hainan Island,China:implications for mid-Holocene sea level change and tectonic uplift[J]. Chinese Science Bulletin,2013,58(23):2869-2876. doi: 10.1007/s11434-013-5692-7
[72] ZONG Y Q, YIM W S, YU F, et al. Late Quaternary environmental changes in the Pearl River Mouth region,China[J]. Quaternary International,2009,206(1/2):35-45.
[73] ZONG Y Q,INNES J B,WANG Z,et al. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands,China[J]. Quaternary Research,2011,76(1):69-82. doi: 10.1016/j.yqres.2011.03.005
[74] CHEN J H, EDWARDS R L, WASSERBURG G J. 238U,234U and 232Th in seawater[J]. Earth Planetary Science Letters,1986,80(3/4):241-251.
[75] STIRLING C H,ESAT T M,MCCULLOCH M T,et al. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial[J]. Earth Planetary Science Letters,1995,135(1/4):115-130.
[76] 朱照宇,邱燕,周厚云,等. 南海全球变化研究进展[J]. 地质力学学报,2002,8(4):315-322,324.
[77] CHEN Y G, LIU T K. Sea Level Changes in the last several thousand years,Penghu Islands,Taiwan Strait[J]. Quaternary Research,1996,45(3):254-262. doi: 10.1006/qres.1996.0026
[78] BAKER J L,LACHNIET M S,CHERVYATSOVA O,et al. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing[J]. Nature Geoscience,2017,10(6):430-435. doi: 10.1038/ngeo2953
[79] XIONG H X,ZONG Y Q, HUANG G Q,et al. Sedimentary responses to Holocene sea-level change in a shallow marine environment of southern China[J]. Journal of Asian Earth Sciences,2018,166(10):95-106.
[80] XIONG H X,ZONG Y Q,LI T,et al. Coastal GIA processes revealed by the early to middle Holocene sea-level history of East China[J]. Quaternary Science Reviews,2020,233(1):106249.
[81] 陈俊仁,陈欣树. 全新世海南省鹿回头海平面变化之研究[J]. 南海地质研究,1991,3:77-86.
[82] BAKER R G V,HAWORTH R J. Smooth or oscillating late Holocene sea-level curve? Evidence from cross-regional statistical regressions of fixed biological indicators[J]. Marine Geology,2000,163(1):353-365.
[83] 刘嘉麒,倪云燕,储国强. 第四纪的主要气候事件[J]. 第四纪研究,2001,21(3):239-248.
[84] RAJSHEKHAR C,REDDY P P. Late Quaternary beach rock formations of Andaman-Nicobar Islands,Bay of Bengal[J]. Journal of the Geological Society of India,2003,62(5):595-604.
[85] CALDAS L,STATTEGGER K,VITAL H. Holocene sea-level history:evidence from coastal sediments of the northern Rio Grande do Norte coast,NE Brazil[J]. Marine Geology,2006,228(1/4):39-53.
[86] BLAAUM M. Methods and code for "classical" age-modeling of radiocarbon sequences[J]. Quaternary Geochronology,2010,5(5):512-518. doi: 10.1016/j.quageo.2010.01.002
[87] CRAIG H. Carbon 13 in Plants and the relationships between carbon 13 and carbon 14 variations in nature[J]. Journal of Geology,1954,62(2):115-149. doi: 10.1086/626141
[88] MARTIN C W. Radiocarbon dating:recent applications and future potential[J]. Geoarchaeology-an International Journal,2010,14(4):371-373.
[89] HALL B L,HENDERSON G M. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes:examples from Antarctica[J]. Earth and Planetary Science Letters,2001,193(3/4):565-577.
[90] 姜帆,刘俊文,黄志炯,等. 黑碳气溶胶的稳定和放射性碳同位素研究进展[J]. 科学通报,2020,65(35):109-120.
[91] BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis,2011,6(3):657-674.
[92] 刘志杰,余佳,孙晓燕,等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究,2016,36(2):492-502.
[93] 余克服,赵建新,施祺,等. 永暑礁西南礁镯生物地貌与沉积环境[J]. 海洋地质与第四纪地质,2003,23(4):1-7.
[94] 陈以健,POLACH H. 沉积物中碳酸盐14C年龄的可靠性[J]. 海洋地质与第四纪地质,1987,2:133-141.
[95] 邓文峰,韦刚健,李献华. 有孔虫的高精度Mg/Ca比值的ICP-AES分析[J]. 海洋地质与第四纪地质,2005,25(2):147-151.
[96] 樊耘畅,丁旋,樊加恩,等. 东海陆架浙闽沿岸泥质区不同属种底栖有孔虫对14C测年的影响及其原因初探[J]. 第四纪研究,2018,38(3):792-798.
[97] 李建芬,苏盛伟,商志文,等. 渤海湾巨葛庄贝壳堤与下伏泥层有孔虫组合的海面变化意义[J]. 地质通报,2016,35(10):1584-1589.
[98] STIRLING C H,ANDERSEN M B. Uranium-series dating of fossil coral reefs:extending the sea-level record beyond the Last Glacial cycle[J]. Earth Planetary Science Letters,2009,284(3/4):269-283.
[99] ZHAO J X ,YU K F ,FENG Y X. High-precision 238U-234U-230Th disequilibrium dating of the recent past:a review[J]. Quaternary Geochronology,2009,4(5):423-433. doi: 10.1016/j.quageo.2009.01.012
[100] BARD E,ARNOLD M,FAIRBANKS R G,et al. 230Th-234U and 14C ages obtained by mass spectrometry on corals[J]. Radiocarbon,1993,35:191-199. doi: 10.1017/S0033822200013886
[101] EISENHAUER A,WASSERBURG G J,CHEN J H,et al. Holocene sea-level determination relative to the Australian continent:U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands[J]. Earth and Planetary Science Letters,1993,114:529-547. doi: 10.1016/0012-821X(93)90081-J
[102] INGRAM B L,SOUTHON J R. Reservoir ages in eastern Pacific coastal and estuarine waters[J]. Radiocarbon,1996,38:573-582. doi: 10.1017/S0033822200030101
[103] HUA Q,ULW S,Yu K F,et al. Temporal variability in the Holocene marine radiocarbon reservoir effect for the Tropical and South Pacific[J]. Quaternary Science Reviews,2020,249:106613. doi: 10.1016/j.quascirev.2020.106613
[104] ZHAO J X, YU K F. Timing of Holocene sea-level highstands by mass spectrometric U-series ages of a coral reef from Leizhou Peninsula,South China Sea[J]. Chinese Science Bulletin,2002,47(4):348-352.
[105] 张培震,王琪,马宗晋. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘,2022,9(2):12.
[106] ZHANG P,XIA H,XIA L. Thermal Ionization Mass Spec trometry (TIMS)-U-Series ages of corals from the South China Sea and Holocene high sea level[J]. Chinese Journal of Geochemisty,2003,22(2):133-139. doi: 10.1007/BF02831522
[107] MA Z B,XIAO J,ZHAO X T,et al. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene[J]. Journal of Coastal Research,2003,19(2):296-303.
[108] HO K S, CHEN J C, JUANG W. Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area,southern China[J]. Journal of Asian Earth Sciences,2000,18(3):307-324. doi: 10.1016/S1367-9120(99)00059-0
[109] LU R. Study on the modern crustal vertical movement in Guangdong coast[J]. South China Journal of Seismology,1997,17(1):25-33.
[110] 滕建彬,沈建伟,PEDOJA K. 深圳西冲湾的海蚀地貌与海滩沉积研究[J]. 现代地质,2007,21(3):511-517.
[111] YU K F,LIU D S. High-frequency climatic oscillations recorded in a Holocene coral reef at Leizhou Peninsula,South China Sea[J]. Science in China Series D:Earth Sciences,2002,45(12):1057-1067. doi: 10.1360/02yd9103
[112] 詹文欢,朱照宇,姚衍桃,等. 南海西北部珊瑚礁记录所反映的新构造运动[J]. 第四纪研究,2006,26(1):77-84.
[113] GISCHLER E,LOMANDO A J. Holocene cemented beach deposits in Belize[J]. Sedimentary Geology,1997,110(3):277-297.
[114] KINDLER P,BAIN R J. Submerged upper Holocene beachrock on San Salvador Island,Bahamas:implications for recent sea-level history[J]. Geologische Rundschau,1993,82(2):241-247.
[115] BOEYINGA J,DUSSELJEE D W,POOL A D G. The effect of beach rock formation on the morphological evolution of a beach. the case study of an eastern Mediterranean Beach:Ammoudara,Greece[J]. Journal of Coastal Research,2013,69(1):65-69.
[116] 何耀堂. 福建泉州湾全新世海滩岩特征及物源环境分析[J]. 福建地质,2014,33(2):112-118.
[117] 马克俭,冯应俊. 浙江沿海全新世海滩岩的沉积相及其意义[J]. 地震地质,1993,15(3):269-276.
[118] 孙奕映,WU P,黄光庆,等. 广东全新世海平面重建与冰川均衡调整模型结果的比较[J]. 第四纪研究,2015,35(2):281-290.
[119] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):1-7.
[120] ZHANG Y,ZONG Y,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global and Planetary Change 2021,196,1033:69.
[121] LAMBECK K,ROUBY H,PURCELL A,et al. Inaugural article by a recently elected academy member:sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(43):211-216.
[122] 汪汉胜,贾路路,PATRICK W,等. 末次冰期冰盖消融对东亚历史相对海平面的影响及意义[J]. 地球物理学报,2012,55(4):1144-1153.
[123] BRADLEY S L,MILNE G A,TEFERLE F N,et al. Glacial isostatic adjustment of the British Isles:new constraints from GPS measurements of crustal motion[J]. Geophysical Journal International,2009,178:14-22. doi: 10.1111/j.1365-246X.2008.04033.x
[124] BRADLEY S L,MILNE G A,SHENNAN I,et al. An improved glacial isostatic adjustment model for the British Isles[J]. Journal of Quaternary Science,2011,26(5):541-552. doi: 10.1002/jqs.1481
[125] PELTIER W R. Global glacial isostasy and the surface of the ice-age earth:the ice-5g (vm2) model and grace[J]. Annual Review of Earth Planetary Sciences,2004,20(32):111-149.
[126] TURCOTTE D L,BURKE K. Global sea-level changes and the thermal structure of the earth[J]. Earth Planetary Science Letters,1978,41(3):341-346. doi: 10.1016/0012-821X(78)90188-7
[127] 杨学祥. 地壳均衡与海平面变化[J]. 地球科学进展,1992,7(5):22-30.
[128] WANG L. East Asian monsoon climate during the Late Pleistocene:high-resolution sediment records from the South China Sea[J]. Marine Geology,1999,156(1/4):245-284.
[129] PELTIER W R,WU P,YUEN D. The Viscosities of the Earth's Mantle[J]. American Geophysical Union,2013,4:1-16.
[130] ZONG Y,YANG Z,XIONG H,et al. The middle-to-late Holocene relative sea-level history,highstand and levering effect on the east coast of Malay Peninsula[J]. Global Planetary Change,2020,196:103369.
[131] 时小军,余克服,陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质,2007,27(5):121-132.