Distribution characteristics and migration trend of surface sediments in Riyue Bay, Hainan, South China
-
摘要:
海南日月湾是典型的岬角弧形海湾,海岸类型多样,底质粒级较粗。基于实测的海流、表层沉积物粒度数据,分析了海南日月湾海域表层沉积物的分布特征,计算了泥沙起动流速与表层沉积物输运通量,探讨了表层沉积物运移趋势。结果表明,研究区表层沉积物颗粒较粗,整体以含砾砂为主,其次为砾质砂、砂、砂质砾和粉砂质砂,呈圆斑状零星分布;沉积物粒级组分从最细的黏土到最粗的砾均有分布,细颗粒主要分布于研究区东侧和西侧近岸海域,粗颗粒呈NS向条带状分布于研究区中南部海域,呈现中部分选差、周边分选好的特征;研究区泥沙起动流速在近岸自东北向西南递增,在远岸自东北向西南先减小后增大,粒径对泥沙起动流速的影响大于水深,靠近分界洲岛海域,单纯的潮流作用只能使部分颗粒发生再悬浮,表层沉积物平均日净输运通量介于0.04~3.7 kg m−1 d−1,净输沙方向总体呈SW向,平均日净输运通量在东北侧海域明显高于西南侧海域,涨潮段单宽输沙率略大于落潮段单宽输沙率(R4站位除外),涨、落潮段输沙方向基本一致。
Abstract:The Riyue Bay in Hainan, South China, is a typical headland arc-shaped bay with various types of coasts and the grain size of the substrate is relatively coarse. By analyzing the sea current and the particle size of the surface sediments obtained in 2011, the surface sediments distribution in the Riyue Bay was clarified, the incipient motion and transport fluxes of the surface sediments calculated, and the net sediment transport trend discussed. Results show that the surface sediments in the study area were relatively coarse, and were mainly composed of gravel-bearing sand, followed by gravel sand and sand, and sandy gravel and silty sand were sporadically distributed. The sediment grain sizes ranged from the clay the finest to the gravel the coarsest; fine particles distributed mainly in the east and west coastal waters of the study area, while coarse particles distributed in NS-direction stripes in the central and southern areas. In addition, the sorting was poor in the central area and good in the surroundings. The incipient velocity of sediment increases from northeast to southwest in the nearshore area, while in the offshore, it firstly decreases and then increases from northeast to southwest. The influence of particle size on the incipient velocity of sediment is greater than that of water depth. The simple tidal current action in the sea area near the Fenjiezhou Island can only cause some particles to resuspension. The incipient motion was between 22 and 39 cm/s. The average daily net transport flux of surface sediments was between 0.04 and 3.7 kg m−1 d−1. The direction of net sediment transport was generally along the direction of SW. The average daily net transport flux in the northeastern sea area was significantly higher than that in the southwestern sea area. The single width sediment transport rate during the rising tide period is slightly higher than that during the falling tide period (excluding station R4), and the sediment transport direction during the rising and falling tide periods is basically the same.
-
Key words:
- Riyue Bay of Hainan /
- distribution characteristics /
- incipient motion /
- migration trend /
- transport flux
-
分选 偏态 峰态 分选程度 分选系数 偏态 偏态值 峰态 峰态值 分选极好 <0.35 极负偏 <−1.50 非常窄 <0.72 分选好 0.35~0.5 负偏 −1.50~−0.33 很窄 0.72~1.03 分选较好 0.5~0.71 近对称 −0.33~0.33 中等 1.03~1.42 分选中等 0.71~1.00 正偏 0.33~1.50 宽 1.42~2.75 分选较差 1.00~2.00 极正偏 >1.50 很宽 2.75~4.50 分选差 2.00~4.00 非常宽 >4.50 分选极差 >4.00 表 2 表层沉积物类型及粒度参数
Table 2. Statistics of the surface sediment type and grain size parameters
沉积物类型 样品数 取值 砾/% 砂/% 粉砂/% 黏土/% Mz/Φ 偏态 峰态 分选系数 砂质砾(sG) 2 最大值 45.8 55.6 3.1 0.2 −0.5 0.2 1.8 2 最小值 41.1 53.2 0.9 0.1 −0.8 0 0.8 1.9 平均值 43.45 54.4 2.0 0.15 −0.65 0.1 1.3 1.95 砾质砂(gS) 7 最大值 26.7 93.8 3 0.2 0.6 0.1 2.4 2 最小值 5.5 71.8 0.2 0 −0.4 -0.8 1.2 0.7 平均值 14.11 84.26 1.53 0.1 0.26 −0.3 1.64 1.24 含砾砂((g)S) 14 最大值 4.4 98.9 16 1.7 3.6 0.7 2.7 1.8 最小值 0.1 82.3 0.3 0 0.5 −0.4 1 0.4 平均值 1.11 93.9 4.56 0.4 1.8 0.2 1.68 0.84 砂(S) 5 最大值 0 98.9 5.3 0.6 3 0.2 1.4 0.6 最小值 0 94.1 1.1 0 2.7 0.1 1 0.4 平均值 0 97.2 2.6 0.18 2.84 0.12 1.1 0.5 粉砂质砂(zS) 2 最大值 0 88.7 24.9 2.9 4 0.7 2.5 1.7 最小值 0 72.2 10.2 1.1 3.3 0.4 1.4 0.9 平均值 0 80.45 17.55 2.0 3.65 0.55 1.95 1.3 表 3 表层沉积物起动流速计算结果
Table 3. Results of incipient motion of surface sediments
站位 R1 R2 R3 R4 R5 R6 水深/m 12.3 22.8 7.8 12.8 10.6 16.6 中值粒径/µm 329.9 125.0 707.1 134.0 707.1 707.1 起动流速/(cm/s) 26 25 36 22 37 39 底层最大流速/(cm/s) 33 37 47 31 21 37 表 4 表层沉积物输运通量
Table 4. Transport fluxes of surface sediments
站位 R1 R2 R3 R4 R5 R6 涨潮单宽输沙率
/(g·m−1·s−1)0.041 7 0.032 3 0.060 4 0.023 8 0.0006 0.008 7 落潮单宽输沙率
/(g·m−1·s−1)0.018 8 0.019 1 0.022 0 0.033 2 0.000 3 0.004 1 涨潮输沙
/(kg·m−1·d−1)1.95 1.51 2.83 1.11 0.03 0.41 落潮输沙
/(kg·m−1·d−1)0.74 0.76 0.87 1.32 0.01 0.16 净输沙
/(kg·m−1·d−1)2.69 2.27 3.7 2.43 0.04 0.57 -
[1] 瞿洪宝,苟鹏飞,孙龙飞. 等. 海南岛崖州湾表层沉积物空间分布特征及其受控机制[J]. 海洋学报,2021,43(12):70-81.
[2] 杨阳,高抒,周亮,等. 海南新村港潟湖表层沉积物粒度特征及其沉积环境[J]. 海洋学报,2016,38(1):94-105.
[3] 袁萍. 渤海表层沉积物的空间分布及其与物源和沉积动力环境的关系[D]. 青岛: 中国海洋大学, 2015.
[4] 王伟伟,付元宾,李树同,等. 渤海中部表层沉积物分布特征与粒度分区[J]. 沉积学报,2013,31(3):478-485. doi: 10.14027/j.cnki.cjxb.2013.03.011
[5] 胡日军,吴建政,朱龙海,等. 东海舟山群岛海域表层沉积物运移特性[J]. 中国海洋大学学报(自然科学版),2009,39(3):495-500,442.
[6] 吕纪轩,胡日军,李毅,等. 烟台北部近岸海域表层沉积物粒度分布及沉积动力环境特征[J]. 海洋地质前沿,2020,36(4):27-36. doi: 10.16028/j.1009-2722.2019.097
[7] 刘成,胡日军,朱龙海,等. 庙岛群岛海域沉积动力环境分区及沉积物输运趋势[J]. 海洋地质前沿,2018,34(8):24-33. doi: 10.16028/j.1009-2722.2018.08004
[8] 杨旭辉,冯秀丽,褚忠信,等. 中国东部陆架表层沉积物粒度特征及其沉积环境浅析[J]. 中国海洋大学学报(自然科学版),2012,42(7/8):132-140.
[9] 肖晓,冯秀丽,石要红,等. 广西沿岸海域表层沉积物粒度分布与输运特征[J]. 中国海洋大学学报(自然科学版),2018,48(7):65-72.
[10] 龚文平,李昌宇,林国尧,等. DELFT 3D在离岸人工岛建设中的应用:以海南岛万宁日月湾人工岛为例[J]. 海洋工程,2012,30(3):35-44.
[11] 李珊. 海南万宁日月湾人工岛冲淤特性研究[D]. 青岛: 中国海洋大学, 2015.
[12] 张翠萍,贾后磊,郑兆勇,等. 离岸人工岛填海造地的正负环境效应分析及对策研究:以海南万宁日月湾人工岛为例[J]. 海洋湖沼通报,2016(2):17-23.
[13] 李汉英,张红玉,王霞,等. 海洋工程对砂质海岸演变的影响:以海南万宁日月湾人工岛为例[J]. 海洋环境科学,2019,38(4):575-581.
[14] 仝长亮,孙龙飞,黄仕锐. 海南省海洋地质调查主要进展与成果[J]. 中国地质调查,2020,7(1):60-70. doi: 10.19388/j.zgdzdc.2020.01.09
[15] 方国洪, 郑文振, 陈宗铺, 等. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986, 98-131.
[16] 张锋,李瑞杰,孙杰,等. 长江口及其邻近海域两定点周日海流观测的准调和分析[J]. 海洋湖沼通报,2019(5):57-63. doi: 10.13984/j.cnki.cn37-1141.2019.05.007
[17] FOLK R L, WARD W C. Brazos River bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
[18] FOLK R L, ANDREWS P B, LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics. 1970, 13(4): 937-968.
[19] 贾建军,高抒,薛允传. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,2002,33(6):577-582. doi: 10.3321/j.issn:0029-814X.2002.06.002
[20] 窦国仁. 再论泥沙起动流速[J]. 泥沙研究,1999(6):1-9. doi: 10.3321/j.issn:0468-155X.1999.06.001
[21] BARTHOLDY J,BARTHOLOMAE A,FLEMMING B W. Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea[J]. Marine Geology,2002,188(3/4):391-413.
[22] 吴敏. 海南岛周边海域环境变化的粘土矿物学研究[D]. 北京: 中国地质大学(北京), 2007.
[23] 薛玉龙,王雪木,杨凡. 海南万宁浅海表层沉积物粒度及地球化学特征对浅海砂矿的指示[J]. 中国矿业,2017,26(1):220-226.
[24] 金秉福. 粒度分析中偏度系数的影响因素及其意义[J]. 海洋科学,2012,36(2):129-135.
[25] 高抒. 沉积物粒径趋势分析:原理与应用条件[J]. 沉积学报,2009,27(5):826-836. doi: 10.14027/j.cnki.cjxb.2009.05.006
[26] 卢连战,史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理,2010,35(6):54-60. doi: 10.3969/j.issn.1673-1212.2010.06.013
[27] MCLAREN P,BOWLES D. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research,1985,55(4):457-470.
[28] GAO S, COLLINS M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”[J]. Sedimentary Geology, 1992, 81(1/2); 47-60.
[29] ASSELMAN N E M. Grain-size trends used to assess the effective discharge for floodplain sedimentation,River Waal,the Netherlands[J]. Journal of Sedimentary Research,1999,69(1):51-61. doi: 10.2110/jsr.69.51
[30] 薛春汀,张勇. 中国近岸海区沿岸流和海岸流对沉积物的搬运[J]. 海洋地质与第四纪地质,2010,30(1):1-7.
[31] 赵利,蔡观强,钟和贤,等. 海南岛东南浅海表层沉积物粒度特征及沉积环境[J]. 海洋地质与第四纪地质,2021,41(2):64-74. doi: 10.16562/j.cnki.0256-1492.2020051502