东海盆地丽水凹陷古新统微量元素地球化学特征及其指示意义

徐波, 刁慧, 王宁, 何俊辉, 施佳铖, 胡碧瑶, 周晓林. 东海盆地丽水凹陷古新统微量元素地球化学特征及其指示意义[J]. 海洋地质前沿, 2022, 38(12): 64-74. doi: 10.16028/j.1009-2722.2022.117
引用本文: 徐波, 刁慧, 王宁, 何俊辉, 施佳铖, 胡碧瑶, 周晓林. 东海盆地丽水凹陷古新统微量元素地球化学特征及其指示意义[J]. 海洋地质前沿, 2022, 38(12): 64-74. doi: 10.16028/j.1009-2722.2022.117
XU Bo, DIAO Hui, WANG Ning, HE Junhui, SHI Jiacheng, HU Biyao, ZHOU Xiaolin. Geochemical characteristics and indicative significance of trace elements in the Paleocene in Lishui Sag, East China Sea Basin[J]. Marine Geology Frontiers, 2022, 38(12): 64-74. doi: 10.16028/j.1009-2722.2022.117
Citation: XU Bo, DIAO Hui, WANG Ning, HE Junhui, SHI Jiacheng, HU Biyao, ZHOU Xiaolin. Geochemical characteristics and indicative significance of trace elements in the Paleocene in Lishui Sag, East China Sea Basin[J]. Marine Geology Frontiers, 2022, 38(12): 64-74. doi: 10.16028/j.1009-2722.2022.117

东海盆地丽水凹陷古新统微量元素地球化学特征及其指示意义

  • 基金项目: 中国海洋石油集团公司科研条件平台建设项目“生烃热模拟实验平台建设”(CNOOC-KJPTGCJS 2020-01)
详细信息
    作者简介: 徐波(1988—),男,硕士,工程师,主要从事油气地球化学实验及应用研究工作. E-mail:xubo10@cnooc.com.cn
  • 中图分类号: P744.4

Geochemical characteristics and indicative significance of trace elements in the Paleocene in Lishui Sag, East China Sea Basin

  • 通过对丽水凹陷近些年完钻的多口探井开展微量元素地球化学分析,系统探讨了研究区古新统古盐度、古气候、古水深、氧化还原环境以及古生产力特征,为厘清凹陷内优质烃源岩形成及发育主控因素起到积极作用。研究认为,丽水凹陷古新统离物源区较近,相对富集Li、Ti、V、Zn、Ga、Rb、Ba、Hf、Th元素,Cr、Mn、Co、Ni、Cu、Sr、Nb、Zr、Ta、U元素则相对亏损(对比岩石圈上地壳微量元素含量),其母岩主要与酸性岩浆岩有关。 由Li、Sr、Ni、Ga元素含量以及Sr/Ba值指示古新统整体处于淡水-半咸水的环境,水体深度较浅。Sr/Cu值的变化指示古新统气候整体表现为干热的气候条件,但垂向上呈现一定的差异,其中古新统中早期处于炎热干旱的气候条件,晚期则为温湿-干热-温湿的交替变化气候。由Ni/Co、V/Sc以及Mo含量等参数指示古新统处于弱氧化-弱还原的沉积环境。利用Ba元素的生物含量(w(Ba生物))分析古新统的生产力情况,认为其整体生产力水平较高,具有较高的生烃潜力,尤其是灵峰组生产力最高,勘探潜力较大。古新统烃源岩有机质含量与古生产力参数、氧化还原性参数、古盐度参数之间呈现较好的相关性,指示沉积环境的诸多因素会对凹陷内优质烃源岩的发育起到协同控制作用。

  • 加载中
  • 图 1  丽水凹陷区域地质图[1]

    Figure 1. 

    图 2  丽水凹陷地层综合柱状图[1]

    Figure 2. 

    图 3  丽水凹陷古新统泥岩中微量元素富集系数(CC) 柱状图

    Figure 3. 

    图 4  丽水凹陷古新统样品Li-Sr、Ni-Ga元素含量关系

    Figure 4. 

    图 5  丽水凹陷古新统样品Sr/Ba值和Sr含量关系

    Figure 5. 

    图 6  古新统样品Sr/Cu和Rb/Sr与地质年代关系

    Figure 6. 

    图 7  古新统样品氧化还原参数与地质年代关系

    Figure 7. 

    图 8  古新统样品中微量元素地化参数与TOC关系

    Figure 8. 

    表 1  古新统样品微量元素地球化学参数汇总

    Table 1.  Summary of trace element geochemical parameters of the Paleocene samples

    井名深度/m层位TOC/%Sr/(μg/g)Mo/(μg/g)Sr/BaRb/SrSr/CuNi/CoV/ScU/ThδUT古水温//(℃)w(Ba生物)/(μg/g)
    L30-61 981明月峰组1.1167.80.70.041.477.229.543.190.180.7031.071 470.4
    2 0810.43138.513.10.110.909.470.743.310.190.7230.191 079.1
    2 1310.4198.40.60.161.249.950.614.110.150.6130.69430.6
    2 1515.1925.22.70.054.161.901.296.190.220.8031.59151.9
    2 2010.83173.31.30.300.8118.493.457.280.160.6629.76330.6
    2 2571.37116.31.30.061.319.061.446.640.180.7030.471 539.4
    2 3050.51116.12.50.151.3113.500.544.620.170.6830.47551.1
    2 2350.59136.01.00.260.8212.580.975.700.160.6430.22347.3
    2 5170.78191.40.60.350.6721.711.504.210.150.6329.54322.5
    2 5610.57148.50.90.250.8416.291.303.230.170.6730.07363.9
    N6-12 573-194.01.20.040.8914.813.5011.340.110.7829.505 859.1
    2 615-347.02.30.050.3324.444.9812.150.120.9327.612 059.6
    2 655-391.01.60.090.3132.313.6728.630.210.8127.07771.8
    2 711-209.00.70.070.8612.745.0821.630.120.8829.326 664.9
    2 735-234.01.40.060.5017.083.7922.540.170.7229.01662.6
    2 7751.40335.03.80.080.5119.595.2233.140.220.8827.764 319.7
    2 777-372.02.10.080.5021.144.0311.660.290.6927.306 267.3
    2 8551.93486.01.10.080.3916.994.3610.540.220.7825.894 136.0
    W13-32 097-319.11.20.050.4033.250.876.030.260.5027.962 700.2
    2 145-236.37.10.110.5427.302.053.420.190.5328.983 804.2
    2 217-230.73.00.230.5625.771.715.930.260.7629.053 852.1
    2 317-184.81.30.030.5618.761.617.840.170.5429.624 080.1
    2 3670.96171.01.70.170.6515.791.518.310.210.6829.795 411.0
    L30-62 611灵峰组0.66175.60.90.270.9520.822.944.780.120.5429.73385.9
    2 6610.76129.01.50.280.9614.612.376.610.170.6730.31250.5
    2 7110.98118.21.10.171.2615.242.096.440.160.6630.44442.7
    N6-12 895-193.00.80.070.5414.734.5512.520.160.8629.522 120.8
    2 935-309.00.80.110.5016.525.0413.870.150.9028.081 140.3
    2 975-273.00.90.100.6218.323.538.480.180.8628.53922.6
    3 015-225.01.60.030.8115.204.0213.540.240.9029.129 889.0
    3 055-277.01.80.080.4419.102.3710.060.160.8028.481 416.6
    3 0991.86267.02.20.080.4518.802.4310.480.190.7928.602 840.5
    3 1452.56202.02.10.060.6417.551.958.550.090.7429.417 614.9
    3 181-209.01.80.070.6716.391.968.690.140.7529.323 288.0
    3 213-247.01.40.040.5220.862.2910.540.160.8228.852 644.8
    3 263-242.03.40.060.5521.341.698.760.190.6928.912 043.2
    3 297-217.03.90.050.6219.432.2116.720.290.7929.22822.7
    3 3352.00242.02.20.060.6020.342.8711.070.250.8528.912 582.1
    3 3831.64224.02.20.040.5921.751.959.660.280.7529.132 390.0
    3 419-199.01.70.030.5816.052.119.770.250.7629.442 322.4
    3 457-225.02.20.020.6210.712.149.770.270.7429.127 675.7
    3 533-198.02.30.030.8411.191.697.490.220.8529.463 184.0
    3 5751.43175.01.80.171.0110.542.189.210.221.1029.743 053.0
    3 6291.51160.01.30.050.898.081.418.210.190.8229.933 060.2
    3 655-168.01.30.090.8010.311.467.480.200.8229.832 908.3
    W13-32 445-151.31.40.060.8115.381.138.010.230.6630.035 514.3
    2 4971.12189.80.80.130.7616.141.537.640.180.6229.563 870.3
    2 587-349.62.00.280.2128.291.088.870.220.7027.583 838.3
    2 659-420.11.40.040.1816.982.4912.540.240.8326.713 637.0
    2 777-297.00.80.170.4018.031.467.830.200.6628.234 771.9
    2 8611.57248.10.90.080.4520.591.358.560.200.7428.835 615.9
    2 9772.12304.74.40.040.336.935.047.300.200.4428.149 952.9
    2 076 285.12.60.080.3825.670.906.740.250.5928.385 700.0
    3 1451.87218.91.10.080.4518.571.187.300.410.6429.20404.3
    3 1911.32185.51.30.080.6315.921.118.150.230.7329.612 454.9
    3 261-225.70.90.210.3621.111.068.990.230.9429.111 492.3
    W13-52 8051.06203.11.50.220.664.213.276.700.300.9429.39210.5
    2 8851.07154.51.20.170.163.0410.041.960.140.5829.99674.8
    2 9451.31250.41.80.100.4310.155.953.780.200.7528.812 078.7
    2 9951.24280.71.60.240.387.148.165.260.441.1428.43676.3
    3 0351.04285.52.60.100.449.154.685.600.220.7928.372 405.0
    3 1251.17371.92.30.110.3012.315.335.600.220.7927.302 961.5
    3 1852.05363.93.50.050.2612.645.145.770.250.8527.407 484.6
    3 2201.01474.22.00.310.2913.793.833.050.320.9926.04923.0
    N6-13 697月桂峰组1.44167.02.30.060.9410.501.498.330.210.7829.843 081.1
    3 7371.55175.02.30.060.7112.871.638.000.270.8529.742 512.9
    3 7772.39156.03.70.060.978.041.578.830.250.8029.981 224.8
    3 8292.50147.05.00.030.9210.581.669.140.310.8030.09720.7
    W13-33 319-197.12.00.060.5320.450.183.320.210.7829.47421.5
    3 3651.77226.01.80.080.3825.820.253.650.210.8929.112 220.6
    3 4111.53273.71.90.180.4424.080.588.190.250.8628.522 760.4
    3 539-180.61.70.170.8014.520.339.370.220.9629.672 077.9
    3 621-170.91.30.220.8215.300.387.660.220.7829.793 938.2
    W13-53 2641.1694.51.50.070.640.592.421.950.411.1030.74814.5
    3 3400.85342.21.00.210.2413.703.101.810.240.8427.671 010.1
    3 3600.92217.32.60.120.356.993.943.250.361.0429.221 157.7
    3 4301.0468.41.30.051.283.063.290.500.361.0431.06853.0
    3 4400.99156.01.60.120.486.052.541.830.330.9929.97693.6
    3 4450.95161.70.80.120.606.092.811.730.280.9129.90794.8
    3 4801.02140.42.90.100.315.073.023.010.341.0130.17855.7
    注:“-”表示未开展TOC分析。
    下载: 导出CSV

    表 2  不同岩石的Zr、Hf含量及其比值[10]

    Table 2.  Zr and Hf contents and their ratios in different rocks

    岩石类型样品号Zr/(μg/g)Hf/(μg/g)Zr/Hf
    纯橄榄岩DST-130.01300
    橄榄岩PCC-170.06117
    玄武岩JB-13003.586
    玄武岩BCR-11904.740
    辉绿岩W-11052.6739
    安山岩AGV-12255.243
    花岗闪长岩GSP-150015.931
    花岗闪长岩JG-11603.546
    花岗岩G-12105.240
    花岗岩G-23007.3541
    花岗岩GM1454.731
    花岗岩NIM-G3001225
    正长岩NIM-S300.650
    古新统样品33.1~373.01.7~10.419.4~72.2
    均值175.6均值5.5均值31.9
    下载: 导出CSV

    表 3  不同水体环境微量元素含量划分指标

    Table 3.  Classification benchmarks of trace element content in different water environments

    微量元素咸水环境含量/(μg/g)淡水环境含量/(μg/g)
    Li>150<90
    Sr800~1000100~500
    Ni>40<25
    Ga<8>17
    下载: 导出CSV

    表 4  水体古盐度微量元素判识指标[11-13]

    Table 4.  Criteria for the discrimination of trace elementsof ancient salinity

    判断指标淡水半咸水咸水
    Sr含量/(μg/g)<300300~500>500
    Sr/Ba<0.60.6~1.0>1.0
    下载: 导出CSV

    表 5  古新统样品氧化还原参数分布

    Table 5.  Distribution of redox parameters of the Paleocene samples

    元素古新统
    明月峰组灵峰组月桂峰组
    Ni/Co0.54~9.540.90~10.040.18~3.94
    2.77(23)2.93(41)1.82(16)
    V/Sc3.19~33.141.96~16.720.50~9.37
    10.07(23)8.35(41)5.04(16)
    U/Th0.11~0.290.09~0.440.21~0.41
    0.19(23)0.22(23)0.28(16)
    δU0.50~0.930.44~1.140.78~1.10
    0.71(23)0.78(41)0.90(16)
    注:
    下载: 导出CSV
  • [1]

    陈晓东,蒋一鸣,漆滨汶,等. 东海丽水凹陷古新统非典型湖相烃源岩及油气特征[J]. 海洋地质前沿,2021,37(4):25-38. doi: 10.16028/j.1009-2722.2021.039

    [2]

    侯国伟,刘金水,蔡坤,等. 东海丽水凹陷古新统源-汇系统及控砂模式[J]. 地质科技情报,2019,38(2):65-74. doi: 10.19509/j.cnki.dzkq.2019.0208

    [3]

    葛和平,陈志勇,方来富,等. 丽水凹陷油气成藏期次探讨[J]. 中国海上油气(地质),2003,17(1):44-50.

    [4]

    葛和平,陈晓东,刁慧,等. 东海盆地丽水凹陷原油地球化学特征及油源分析[J]. 中国海上油气,2012,24(4):8-12,31. doi: 10.3969/j.issn.1673-1506.2012.04.002

    [5]

    申雯龙,漆滨汶. 东海盆地丽水凹陷有效烃源岩判定及分布预测[J]. 地质科技通报,2020,39(3):77-88.

    [6]

    刘俊海,吴志轩,于水,等. 丽水凹陷古新统微量元素地球化学特征及其地质意义[J]. 中国海上油气,2005,17(1):8-11. doi: 10.3969/j.issn.1673-1506.2005.01.002

    [7]

    周士科,徐长贵. 轴向重力流沉积:一种重要的深水储层:以东海盆地丽水凹陷明月峰组为例[J]. 地质科技情报,2006,25(5):57-62.

    [8]

    田兵,庞国印,王琪,等. 叠合断陷盆地油气成藏条件分析:以东海丽水-椒江凹陷为例[J]. 岩性油气藏,2012,24(5):32-37. doi: 10.3969/j.issn.1673-8926.2012.05.006

    [9]

    梁万乐,李贤庆,魏强,等. 库车坳陷北部山前带中生界泥岩元素地球化学特征及其沉积环境意义[J]. 矿业科学学报,2019(5):375-383. doi: 10.19606/j.cnki.jmst.2019.05.001

    [10]

    刘钦甫, 杨晓杰, 丁述理. 华北晚古生代煤系高岭岩微量元素和稀土元素地球化学研究. 地球化学, 1998, 27(2): 196-203

    [11]

    邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993: 18-28.

    [12]

    李进龙,陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率,2003,10(5):1-3. doi: 10.3969/j.issn.1009-9603.2003.05.001

    [13]

    文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120. doi: 10.3969/j.issn.1001-6872.2008.01.016

    [14]

    孔凡翠,杨瑞东,魏怀瑞,等. 贵州威宁草海第四系窑上组沉积物微量元素地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质,2011,31(5):117-126.

    [15]

    张才利,高阿龙,刘哲,等. 鄂尔多斯盆地长7油层组沉积水体及古气候特征研究[J]. 天然气地球科学,2011,22(4):582-587.

    [16]

    范玉海,屈红军,王辉,等. 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382-389.

    [17]

    张茂盛,廖健德,刘清明,等. 微量元素在地质沉积环境中的应用[J]. 广西师范大学学报:自然科学版,2003,21(1):19-21.

    [18]

    王永炜,李荣西,高胜利,等. 渤海湾盆地黄骅坳陷湖相碳酸盐岩微量元素特征及沉积环境[J]. 石油实验地质,2017,39(6):849-857. doi: 10.11781/sysydz201706849

    [19]

    颜佳新,徐四平,李方林. 湖北巴东栖霞组缺氧沉积环境的地球化学特征[J]. 岩相古地理,1998,18(6):27-31.

    [20]

    吴朝东,杨承运,陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志,1999,18(1):26-39.

    [21]

    NICHOLLS G D. Trace elements in sediments:an assessment of their possible utility as depth indicators[J]. Marine Geology,1967,5(5/6):539-555.

    [22]

    徐博,曾文倩,刁慧,等. 东海盆地西湖凹陷平湖组微量稀土元素对古生产环境的指示意义[J]. 海洋地质与第四纪地质,2021,41(3):72-84. doi: 10.16562/j.cnki.0256-1492.2020082402

    [23]

    JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.

    [24]

    谢国梁,沈玉林,赵志刚,等. 西湖凹陷平北地区泥岩地球化学特征及其地质意义[J]. 地球化学,2013,42(6):599-610. doi: 10.19700/j.0379-1726.2013.06.008

    [25]

    李浩,陆建林,李瑞磊,等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学,2017,42(10):1774-1786.

    [26]

    彭海艳,陈洪德,向芳,等. 微量元素分析在沉积环境识别中的应用:以鄂尔多斯盆地东部二叠系山西组为例[J]. 新疆地质,2006,24(2):202-205. doi: 10.3969/j.issn.1000-8845.2006.02.022

    [27]

    田正隆,陈绍勇,龙爱民. 以Ba为指标反演海洋古生产力的研究进展[J]. 热带海洋学报,2004,23(3):78-86.

    [28]

    TATLOR S R, MCLENNAN S M. The continental Crust: its composition and evolution: an examination of the Geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell , Scientific Publications, 1985: 312.

    [29]

    陈慧,解习农,李红敬,等. 利用古氧相和古生产力替代指标评价四川上寺剖面二叠系海相烃源岩[J]. 古地理学报,2010,12(3):324-333. doi: 10.7605/gdlxb.2010.03.008

    [30]

    韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1106
  • PDF下载数:  376
  • 施引文献:  0
出版历程
收稿日期:  2022-04-19
刊出日期:  2022-12-28

目录