Method and application of "sweet spot" seismic prediction of the Paleogene low-porosity low-permeability clastic rock in the East China Sea Basin
-
摘要:
东海Q构造古近系低孔低渗储层普遍发育,砂泥岩阻抗叠置严重,整体非均质性变化剧烈。落实致密碎屑岩“甜点”分布范围是当前该区勘探开发一体化研究亟需解决的关键问题。为此,在地震岩性学研究的基础上,提出了一种基于叠前敏感属性反演的地震“甜点”预测技术。采用振幅随偏移距变化(AVO)截距和梯度合成的扩展弹性阻抗(EEI35°)属性开展地震岩相预测。利用高孔砂岩储层的低密度特征解决地震物相预测的问题,并结合地震岩石物理定性和定量判析技术,优选复合属性进行地震流相识别。最终在层递式相控思想指导下,实现相对高孔高气饱优质储层的准确预测。实例应用表明:本方法能够有效刻画研究区致密碎屑岩“甜点”展布规律,为后续目标搜索和井位优化提供重要参考,具有较高的可靠性和推广应用价值。
Abstract:Low-porosity low-permeability reservoirs are widely developed in the Paleogene Q structure in the East China Sea Basin, and the overall heterogeneity of sand body curtain changes dramatically. The key problem to be solved in the integration research of exploration and development of the Q structure is to delineate the superior reservoir development area of "sweet spot". A prediction method of seismic "sweet spot" was established by sensitive attribute inversion, of which the main idea is to realize the prediction of tight reservoir "sweet spot" by advanced optimization in seismic lithofacies, physical facies, and fluid facies. In this paper, the EEI (extended elastic impedance) attributes combining AVO (amplitude variation offset) intercept and gradient were used to predict lithofacies. The low-density characteristics of high-porosity sandstone reservoir were used to predict physical facies. Combining qualitative and quantitative analysis in rock physics, new composite attributes were optimized to identify fluid facies. Finally, "sweet spot" reservoir could be predicted accurately under the guidance of hierarchical phase control. Application examples showed that this method could be effectively characterize the distribution of tight clastic "sweet spots" in the research area, and provided an important reference for subsequent target search and well-location optimization in high reliability and application value.
-
表 1 研究区储层“甜点”类型划分标准
Table 1. Classification criteria of reservoir “sweet spot” in the research area
类别 孔隙度 气饱和度 渗透率/×10−3 μm2 I类“甜点” >0.12 >0.4 >1.0 II类“甜点” 0.10~0.12 >0.4 0.5~1.0 非“甜点” <0.10 — <0.5 -
[1] 谢玉洪. 中国海油“十三五”油气勘探重大成果与“十四五”前景展望[J]. 中国石油勘探,2021,26(1):43-54.
[2] 国家能源局. 致密砂岩气地质评价方法[S]. 北京: 石油工业出版社, 2011.
[3] 张岩,秦德文,胡伟. 基于Russell流体因子的东海古近系烃类检测方法研究及应用[J]. 地球物理学进展,2022,37(2):920-927. doi: 10.6038/pg2022FF0216
[4] 印兴耀,曹丹平,王保丽,等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探,2014,49(1):22-34.
[5] 印兴耀,张世鑫,张峰. 针对深层流体识别的两项弹性阻抗反演Russell流体因子直接估算方法研究[J]. 地球物理学报,2013,56(7):2378-2390. doi: 10.6038/cjg20130724
[6] 刘力辉,陈珊,倪长宽. 叠前有色反演技术在地震岩性学研究中的应用[J]. 石油物探,2013,52(2):171-176. doi: 10.3969/j.issn.1000-1441.2013.02.009
[7] 刘力辉,李建海,杨晓,等. 叠前AVO属性的地震岩性学探索与实践研究[J]. 石油物探,2013,52(2):53-58.
[8] 刘力辉,李建海,刘玉霞. 地震物相分析方法与“甜点”预测[J]. 石油物探,2013,52(4):432-437,171-176. doi: 10.3969/j.issn.1000-1441.2013.04.014
[9] 许翠霞,马鹏善,赖令彬,等. 致密砂岩含气性敏感参数:以松辽盆地英台气田营城组为例[J]. 石油勘探与开发,2014,41(6):712-716. doi: 10.11698/PED.2014.06.09
[10] 张丹妮,姜效典,邢军辉,等. 地震属性预测西湖凹陷N构造“甜点”[J]. 特种油气藏,2016,23(4):73-76. doi: 10.3969/j.issn.1006-6535.2016.04.016
[11] 张林清,张会星,姜效典,等. 弹性参数反演与属性融合技术在“甜点”预测中的应用[J]. 天然气地球科学,2017,28(4):582-589.
[12] 曹冰,秦德文,陈践发. 西湖凹陷低渗储层“甜点”预测关键技术研究与应用:以黄岩A气田为例[J]. 石油学报,2018,36(1):188-197.
[13] 李久娣. 东海西湖N区块致密砂岩气藏甜点预测研究[J]. 石油物探,2019,52(2):171-176.
[14] 周家雄,马光亮,随波,等. 储层参数岩石物理反演在“甜点”储层预测中的应用研究:以W17油田为例[J]. 地球物理学进展,2019,34(3):1159-1169. doi: 10.6038/pg2019CC0166
[15] 王迪,张益明,刘志斌,等. AVO定量解释模板在LX地区致密气“甜点”预测中的应用[J]. 石油物探,2020,59(6):936-948. doi: 10.3969/j.issn.1000-1441.2020.06.012
[16] 韩刚,高红艳,龙凡,等. 叠前反演在西湖凹陷致密砂岩储层“甜点”预测中的应用[J]. 石油物探,2021,60(3):471-478. doi: 10.3969/j.issn.1000-1441.2021.03.013
[17] 肖张波,雷永昌,邱欣卫,等. 泊松阻抗属性在陆丰南古近系低渗砂岩储层“甜点”识别中的应用[J]. 海洋地质前沿,2022,38(6):70-77.
[18] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探,2014,38(5):970-975.
[19] SHUEY R T. A simplication of the Zoeppritz equations[J]. Geophysics,1985,50(4):609-614.
[20] AKI K, RICHARDS P G. Quantitative seismology: Theory and methods[M]. San Francisco: W.H. Freeman and Co., 2002.
[21] RUSSELL B,GRAY D, HAMPSON D. Linearized AVO and poroelasticity[J]. Geophysics,2011,76(3):19-29.
[22] 冷雪梅,杜启振,孟宪军. 基于纵横波弹性阻抗联合反演的储层流体检测方法[J]. 断块油气田,2019,26(3):319-323.
[23] YANG J L,ZHANG H,XIE L F,et al. The prediction of Jurassic gas-sand with low water saturation using seismic-derived density property:a case study from Sichuan Basin[J]. SEG Technical Program Expanded Abstracts,2013:433-436.
[24] 尤丽,张迎朝,李才,等. 文昌10区珠海组低渗储层“甜点”控制因素[J]. 东北石油大学学报,2014,38(3):18-24. doi: 10.3969/j.issn.2095-4107.2014.03.003
[25] 张建坤,吴吉忠,许文会,等. 基于岩石物理的致密砂岩油藏地堑优势储层预测:以渤海湾盆地南堡凹陷4号构造东营组二段为例[J]. 石油学报,2017,38(7):793-803. doi: 10.7623/syxb201707006
[26] 秦德海,李德郁,蔡纪琰,等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展,2018,33(5):2148-2152. doi: 10.6038/pg2018BB0390
[27] 贾凌云,李琳,王千遥,等. 基于广义弹性阻抗的流体因子反演方法研究与应用[J]. 石油物探,2018,57(2):302-311. doi: 10.3969/j.issn.1000-1441.2018.02.016
[28] PAN X P,LI L,ZHANG G Z,et al. Elastic-impedance-based fluid/porosity term and fracture weakness inversion in transversely isotropic media with a tilted axis of symmetry[J]. Geofluids,2020,86(1):1-18.