Sedimentary characteristics and facies model of wave-controlled delta-turbidity fan in the Eocene Wenzhou Formation in the Lishui Sag of the East China Sea Shelf Basin
-
摘要:
东海陆架盆地丽水凹陷是重要的油气勘探区。为了加快浅层始新统温州组岩性圈闭勘探,利用新采集的三维地震、地质资料,运用层序地层学理论方法,对温州组进行层序地层划分,将其划分为SQ1、SQ2、SQ3共3个三级层序,其中,SQ1发育典型的低位、海侵和高位体系域,SQ2仅发育海侵和高位体系域。各体系域地震反射终止关系和地震相差异明显。本次研究重点是对SQ1低位域沉积平面展布特征进行刻画。SQ1低位域发育浪控三角洲-浊积扇沉积体系,沉积微相以三角洲前缘滨岸砂坝和薄层灰岩浅滩为主,垂向叠置样式以进积为主。根据浪控三角洲和浊积扇的沉积特征,建立了温州组SQ1低位域浪控三角洲-浊积扇沉积模式。本次研究厘清了低位域三角洲-浊积扇沉积体系的展布特征和形成机制,以期为在始新统温州组寻找岩性圈闭提供参考。
Abstract:Lishui Sag is an important oil and gas exploration area in the East China Sea Shelf Basin. To accelerate the exploration of lithologic traps in the shallow Eocene Wenzhou Formation, we analyzed new three-dimensional seismic and geological data in sequence stratigraphy theory, by which the sequence stratigraphy of the Wenzhou Formation was divided into three third-order sequences, i.e., SQ1, SQ2, and SQ3. Among them, SQ1 developed typical lowstand, transgressive, and highstand system tract, SQ2 developed transgressive system tract and highstand system tract. There are obvious differences between seismic reflection termination relations and seismic facies in each system tract. Moreover, the sedimentary plane distribution of the SQ1 tracts was anatomized. SQ1 lowstand domain system was a delta and turbidity fan featuring sedimentary microfacies indicative of delta front shore sandbars and thin limestone shoals, based on which the sedimentary model of wave-controlled delta turbidity fan was established. This study clarified the distribution characteristics and formation mechanism of the wave-controlled delta-turbidity fan sedimentary system in the Eocene Wenzhou Formation, in order to provide reference for searching lithological traps.
-
图 1 丽水凹陷区域地质背景及沉积充填序列[15]
Figure 1.
图 9 温州组浪控三角洲-浊积扇沉积模式图[20]
Figure 9.
-
[1] 陈志勇. 丽水、椒江凹陷油气潜力分析和勘探突破口的选择[J]. 中国海上油气(地质),1997,11(6):451-458.
[2] 陈志勇,吴培康,吴志轩. 丽水凹陷石油地质特征及勘探前景[J]. 中国海上油气(地质),2000,14(6):384-391.
[3] 刘俊海,吴志轩,于水,等. 丽水凹陷古新统微量元素地球化学特征及其地质意义[J]. 中国海上油气,2005,17(1):8-11. doi: 10.3969/j.issn.1673-1506.2005.01.002
[4] 刘景彦,陈志勇,林畅松,等. 东海丽水西次凹古新统明月峰组层序-体系域分析及沉积体系展布[J]. 沉积学报,2004,22(3):380-386. doi: 10.3969/j.issn.1000-0550.2004.03.002
[5] 田杨,叶加仁,杨宝林,等. 东海陆架盆地丽水凹陷油气成藏规律及区带优选[J]. 天然气地球科学,2016,27(4):639-653. doi: 10.11764/j.issn.1672-1926.2016.04.0639
[6] 侯国伟,刘金水,蔡坤,等. 东海丽水凹陷古新统源-汇系统及控砂模式[J]. 地质科技情报,2019,38(2):65-74. doi: 10.19509/j.cnki.dzkq.2019.0208
[7] 吕成福,陈国俊,梁建设,等. 东海陆架盆地瓯江凹陷古近系沉积演化[J]. 海洋地质前沿,2011,27(8):1-7. doi: 10.16028/j.1009-2722.2011.08.001
[8] 覃军,张迎朝,刘金水,等. 东海陆架盆地丽水-椒江凹陷古新统L气田成藏过程与主控因素[J]. 天然气地球科学,2022,33(4):605-617.
[9] 刘正华,侯元立,陈淑慧,等. 东海丽水凹陷早新生代沉积特征及物源演化[J]. 地球科学,2022,47(7):2562-2572. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207020
[10] 田兵,李小燕,庞国印,等. 叠合断陷盆地沉积体系分析:以东海丽水-椒江凹陷为例[J]. 沉积学报,2012,30(4):696-705.
[11] 王毅,姜亮,杨伟利. 丽水-椒江凹陷断裂构造运动学[J]. 地质科学,2000,35(4):441-442. doi: 10.3321/j.issn:0563-5020.2000.04.007
[12] 杨伟利,王毅. 丽水-椒江凹陷伸展运动分析[J]. 西南石油学院学报,2002,24(3):8-9.
[13] 刘俊海,杨香华,吴志轩,等. 东海盆地丽水凹陷古新统锆石示踪作用分析[J]. 海洋地质与第四纪地质,2004,24(1):85-92. doi: 10.16562/j.cnki.0256-1492.2004.01.012
[14] 葛和平,陈志勇,方来富,等. 丽水凹陷油气成藏期次探讨[J]. 中国海上油气(地质),2003,17(1):44-50.
[15] 蔡坤,徐东浩,袁悦,等. 东海丽水凹陷西次凹明月峰组浊积扇沉积特征及沉积模式[J]. 海洋地质与第四纪地质,2020,40(1):22-30.
[16] 李娟,王天奇,孙松领,等. 北非Sabratah盆地下始新统El Garia组货币虫灰岩层序地层与沉积模式[J]. 地质科技情报,2015,34(5):21-26.
[17] 陈旭,欧荣生,斯尚华,等. 巴基斯坦N区块浪控三角洲沉积相划分及模式[J]. 沉积学报,2022,40(1):255-266. doi: 10.14027/j.issn.1000-0550.2020.069
[18] 高雨,屈红军,陈硕,等. 浪控三角洲发育特征:以莺歌海盆地东方1-1气田上新统二段为例[J]. 海洋地质前沿,2021,37(11):42-52.
[19] 罗顺社,高振中. 塔西南考库泥盆系浪控陆棚和浪控三角洲微相[J]. 石油与天然气地质,1995,16(3):227-233. doi: 10.11743/ogg19950305
[20] 卡图尼努. 层序地层学原理[M]. 北京: 石油工业出版社, 2009.