江苏盐城滨海湿地净生态系统碳交换量模拟参数选择

陈琦, 苏国辉, 魏合龙, 叶思源, 谢柳娟, 丁喜桂. 江苏盐城滨海湿地净生态系统碳交换量模拟参数选择[J]. 海洋地质前沿, 2023, 39(2): 56-65. doi: 10.16028/j.1009-2722.2022.247
引用本文: 陈琦, 苏国辉, 魏合龙, 叶思源, 谢柳娟, 丁喜桂. 江苏盐城滨海湿地净生态系统碳交换量模拟参数选择[J]. 海洋地质前沿, 2023, 39(2): 56-65. doi: 10.16028/j.1009-2722.2022.247
CHEN Qi, SU Guohui, WEI Helong, YE Siyuan, XIE Liujuan, DING Xigui. Selection of parameters for simulation of net ecosystem carbon flux in Yancheng coastal wetland, Jiangsu[J]. Marine Geology Frontiers, 2023, 39(2): 56-65. doi: 10.16028/j.1009-2722.2022.247
Citation: CHEN Qi, SU Guohui, WEI Helong, YE Siyuan, XIE Liujuan, DING Xigui. Selection of parameters for simulation of net ecosystem carbon flux in Yancheng coastal wetland, Jiangsu[J]. Marine Geology Frontiers, 2023, 39(2): 56-65. doi: 10.16028/j.1009-2722.2022.247

江苏盐城滨海湿地净生态系统碳交换量模拟参数选择

  • 基金项目: 国家重点研发计划“场景驱动的海洋科学大数据挖掘分析关键技术与应用” (2021YFF0704000);青岛海洋科学与技术试点国家实验室山东省专项经费(2022QNLM05032-4);中国地质调查局项目(DD20221711)
详细信息
    作者简介: 陈琦(1998—),男,硕士,主要从事地球信息科学技术方面的研究工作. E-mail:760536077@qq.com
    通讯作者: 苏国辉(1977—),女,硕士,正高级工程师,主要从事海洋地质信息化技术及应用研究. E-mail:sguohui@mail.cgs.gov.cn
  • 中图分类号: P628.4

Selection of parameters for simulation of net ecosystem carbon flux in Yancheng coastal wetland, Jiangsu

More Information
  • 滨海湿地净生态系统碳交换量受到多种环境因素的影响,在进行滨海湿地净碳交换量估算建模时,参数的选择至关重要,如何合理地选择输入参数不仅对于估算结果的精度有影响,同时也会影响预测模型的适用性。本研究使用了Pearson、Spearman、距离相关系数、最大互信息相关系数4种相关系数来计算各个环境因素与净碳交换量之间的相关性,基于相关系数来选择最佳的输入参数组合。利用实际测得的江苏盐城盐沼湿地数据,依次选择各个相关性中最高的8个参数组合,基于卷积神经网络对江苏盐城滨海湿地NEE进行建模,得到了4个预测模型,并使用均方根误差和平均绝对值误差来进行模型精度的验证。研究表明,使用基于最大互信息系数得到的参数组合进行滨海湿地NEE建模时模型的精度最好,误差最小;净光合有效辐射,净辐射,地表辐射与NEE在4个相关系数中都属于强相关,表明这一类辐射类参数对滨海湿地NEE的影响要大于其他参数;各参数与NEE之间的关系既包含线性关系也包含非线性关系,传统的单一线性分析手段无法完整准确地反应各个环境参数与NEE之间的响应关系;基于卷积神经网络的滨海湿地NEE预测模型在精度上要优于其它同类型模型,这表明使用该模型在进行NEE预测建模时具有很好的适用性。

  • 加载中
  • 图 1  Pearson相关性比较

    Figure 1. 

    图 2  Spearman相关性比较

    Figure 2. 

    图 3  距离相关性比较

    Figure 3. 

    图 4  最大信息系数比较

    Figure 4. 

    图 5  NEE预测卷积神经网络结构

    Figure 5. 

    图 6  各个参数与NEE之间的相关系数

    Figure 6. 

    表 1  观测参数符号及名称

    Table 1.  Symbols and names of the variables

    符号参数名称符号参数名称
    RG地表辐射WDir风向
    PPDF光合有效辐射APre气压
    RN净辐射Rain降雨量
    ATemp气温WSpee风速
    RH相对湿度Vapor蒸汽压
    TS土壤温度SWC土壤含水量
    Temp地表温度ALB土壤反照率
    NEE净生态系统碳交换量
    下载: 导出CSV

    表 2  Pearson相关系数计算结果Table2 Pearson correlation coefficient calculation results

    参数名称Rp参数名称Rp
    RG0.607 8RN0.599 3
    PPDF0.613 9ALB0.000 1
    ATemp0.446 1RH0.362 6
    Temp0.343 7SWC0.033 8
    WDir0.020 6TS0.120 6
    Vapor0.023 0APre0.056 1
    WSpee0.153 7Rain0.027 6
    下载: 导出CSV

    表 3  Spearman相关系数计算结果

    Table 3.  Results of the Spearman coefficient calculation

    参数名称Rs参数名称Rs
    RG0.683 5RN0.638 8
    PPDF0.672 6ALB0.236 7
    ATemp0.484 5RH0.442 1
    Temp0.355 0SWC0.086 3
    WDir0.054 5TS0.134 5
    Vapor0.039 0APre0.035 0
    WSpee0.183 6Rain0.034 1
    下载: 导出CSV

    表 4  距离相关系数计算结果

    Table 4.  Results of distance coefficient calculation

    参数名称dCor参数名称dCor
    RG0.651 4RN0.638 2
    PPDF0.655 2ALB0.207 6
    ATemp0.491 0RH0.419 2
    Temp0.366 3SWC0.145 6
    WDir0.212 2TS0.179 9
    Vapor0.146 1APre0.117 2
    WSpee0.176 2Rain0.046 9
    下载: 导出CSV

    表 5  最大信息系数计算结果

    Table 5.  Results of the maximal information coefficients calculation

    参数名称参数名称
    RG0.539 6RN0.522 7
    PPDF0.494 7ALB0.403 6
    ATemp0.275 7RH0.247 4
    Temp0.213 4SWC0.195 0
    WDir0.170 8TS0.139 5
    Vapor0.121 6APre0.103 3
    WSpee0.099 0Rain0.078 1
    下载: 导出CSV

    表 6  参数组合

    Table 6.  Combination of the parameters

    相关系数计算方法参数组合
    Pearson相关系数光合有效辐射,地表辐射,净辐射,气温,
    相对湿度,地表温度,风速,土壤温度
    Spearman相关系数地表辐射,光合有效辐射,净辐射,气温,
    相对湿度,地表温度,土壤反照率,风速
    距离相关系数光合有效辐射,地表辐射,净辐射,气温,
    相对湿度,地表温度,风向,土壤反照率
    最大信息系数地表辐射,净辐射,光合有效辐射,土壤反照率,气温,相对湿度,地表温度,土壤含水率
    下载: 导出CSV

    表 7  误差计算结果

    Table 7.  Results of calculation error

    均方根误差绝对值误差
    CNN_Model10.013 40.064 0
    CNN_Model20.009 20.068 4
    CNN_Model30.010 90.057 4
    CNN_Model40.005 10.043 9
    下载: 导出CSV

    表 8  本次模型预测精度与其他模型精度的比较

    Table 8.  Comparison in prediction accuracy between CNN model and other data driven models

    模型均方根误差参考文献
    ELM模型0.589 3[35]
    SVM1.476 4[35]
    GNN0.112 3[36]
    RF0.612 0[36]
    CNN_Model10.005 1
    CNN_Model20.010 9
    CNN_Model30.009 2
    CNN_Model40.013 4
    下载: 导出CSV
  • [1]

    唐剑武,叶属峰,陈雪初,等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学:地球科学,2018,48(6):661-670.

    [2]

    TANG J W,YE S F,CHEN X C, et al. Coastal blue carbon:concept,study method,and the application to ecological restoration[J]. Science China:Earth Sciences),2018,61(6):637-646.

    [3]

    吕亚香,戚智彦,刘伟,等. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报,2021,45(4):11-13.

    [4]

    MÜLLER C,LUCHT W. Robustness of terrestrial carbon and water cycle simulations against variations in spatial resolution[J]. Journal of Geophysical Research:atmospheres,2007,112(D6):19-26.

    [5]

    DESAI,ANKUR R. Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape[J]. Journal of Geophysical Research. Biogeosciences,2011,116(G3):G00J02-1-G00J02-13.

    [6]

    GRANT R F,BALDOCCHI D D,MA S. Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates:modelling with Ecosys[J]. Agricultural and Forest Meteorology,2012,152:189-200.

    [7]

    DOU X,YANG Y. Estimating forest carbon fluxes using four different data-driven techniques based on long-term eddy covariance measurements:model comparison and evaluation[J]. Science of the Total Environment,2018,627:78-94.

    [8]

    CAI J , XU K , ZHU Y , et al. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest[J]. Applied Energy, 2020, 262: 1429-1442.

    [9]

    AGO E E,AGBOSSOU E K,GALLE S,et al. Long term observations of carbon dioxide exchange over cultivated savanna under a Sudanian climate in Benin (West Africa)[J]. Agricultural and Forest Meteorology,2014,197:13-25. doi: 10.1016/j.agrformet.2014.06.005

    [10]

    HAO L,ZHANG Z. Mining the intrinsic trends of CO2 solubility in blended solutions[J]. Journal of CO2 Utilization,2018,26:496-502. doi: 10.1016/j.jcou.2018.06.008

    [11]

    ZHANG Z,LI H,CHANG H et al. Machine learning predictive framework for CO2 thermodynamic properties in solution[J]. Journal of CO2 Utilization,2018,26:152-159. doi: 10.1016/j.jcou.2018.04.025

    [12]

    WU J,ALBERT L P,LOPES A P et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science,2016,351(6276):972-976. doi: 10.1126/science.aad5068

    [13]

    VELPURI M N,SENAY G B,SINGH R K,et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States:using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment:An Interdisciplinary Journal,2013,139:35-49. doi: 10.1016/j.rse.2013.07.013

    [14]

    CAI J,XU K,ZHU Y et al. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest[J]. Applied Energy,2020,262:114566-114566. doi: 10.1016/j.apenergy.2020.114566

    [15]

    WANG Y Y,XIE Z H,JIA B H,et al. Improving simulation of the terrestrial carbon cycle of China in Version 4.5 of the community land model using a revised V_(cmax) Scheme[J]. Atmospheric and Oceanic Science Letters,2015,8(2):88-94. doi: 10.1080/16742834.2015.11447243

    [16]

    SCHAEFER K,SCHWALM C R,WILLIAMS C,et al. A model-data comparison of gross primary productivity:results from the north American carbon program site synthesis[J]. Journal of Geophysical Biogeosciences Research,2012,117(G3):G03010-1-G03010-15.

    [17]

    CHE S, TAN X, XIANG C, et al. Stand basal area modelling for Chinese fir plantations using an artificial neural network model[J]. Journal of Forestry Research,2019,30(5):1641-1649.

    [18]

    JUNG M,REICHSTEIN M,MARGOLIS H,et al. Global patterns of land-atmosphere fluxes of carbon dioxide,latent heat,and sensible heat derived from eddy covariance,satellite,and meteorological observations[J]. Journal of Geophysical Research. Biogeosciences,2011,116(G3):G00J07-1-G00J07-16.

    [19]

    XIAO J F,ZHUANG Q L,BALDOCCHI D D,et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data[J]. Agricultural and Forest Meteorology,2008,148(11):1827-1847. doi: 10.1016/j.agrformet.2008.06.015

    [20]

    ROBERT J M,MAIER H R,DANDY J M,et al. Non-linear variable selection for artificial neural networks using partial mutual information[J]. Environmental Modelling & Software,2008,23(10/11):1312-1326.

    [21]

    QUILTY J,ADAMOWSKI J,KHALIL B,et al. Bootstrap rank-ordered conditional mutual information (broCMI):a nonlinear input variable selection method for water resources modeling[J]. Water Resources Research,2016,52(3):2299-2326. doi: 10.1002/2015WR016959

    [22]

    GALELLI S,HUMPHREY G B,MAIER H R, et al. An evaluation framework for input variable selection algorithms for environmental data-driven models[J]. Environmental Modelling & Software,2014,62:33-51.

    [23]

    NOORI R,KARBASSI A R,MOGHADDAMNIA A, et al. Assessment of input variables determination on the SVM model performance using PCA,Gamma test,and forward selection techniques for monthly stream flow prediction[J]. Journal of Hydrology,2011,401(3/4):177-189. doi: 10.1016/j.jhydrol.2011.02.021

    [24]

    李永强,董智,丁晨曦,等. 山东省暖性草丛生态系统碳库现状和碳通量季节变化特征[J]. 植物生态学报,2018,42(3):11-13.

    [25]

    王富强,刘扬李,杨欢,等. 寒区滨河湿地生态系统碳通量特征及影响因素[J]. 水电能源科学,2018,36(10):68-71.

    [26]

    GJ SZÉKELY, RIZZO M L, BAKIROV N K. Measuring and testing dependence by correlation of distances [C]//ACM Symposium on Virtual Reality Software & Technology, 2007.

    [27]

    ABRAHART R J,ANCTIL F,Coulibaly P,et al. Two decades of anarchy Emerging themes and outstanding challenges for neural network river forecasting[J]. Progress in Physical Geography,2012,36(4):480-513. doi: 10.1177/0309133312444943

    [28]

    YADAV A K,CHANDEL S S. Solar radiation prediction using Artificial Neural Network techniques:a review[J]. Renewable and Sustainable Energy Reviews,2014:33-33.

    [29]

    MELESSE A M,HANLEY R S. Artificial neural network application for multi-ecosystem carbon flux simulation[J]. Ecological Modelling,2005,189(3/4):305-314. doi: 10.1016/j.ecolmodel.2005.03.014

    [30]

    WEN X D,ZHAO Z H,DENG X W,et al. Applying an artificial neural network to simulate and predict Chinese Cross Mark fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China[J]. ECOL MODEL,2014,294(5):19-26.

    [31]

    GU,JIUXIANG,WANG,ZHENHUA,KUEN,JASON,et al. Recent advances in convolutional neural networks[J]. Pattern Recognition:The Journal of the Pattern Recognition Society,2018:77354-377.

    [32]

    HAMZEHIE M E, MAZINANI S, DAVARDOOST F, et al. Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions[J]. Journal of Natural Gas Science and Engineering,2014,21:19-25. doi: 10.1016/j.jngse.2014.07.022

    [33]

    BEIGZADEH R, RAHIMI M, SHABANIAN S R. Developing a feed forward neural network multilayer model for prediction of binary diffusion coefficient in liquids[J]. Fluid Phase Equilibria,2012,331:48-57. doi: 10.1016/j.fluid.2012.06.025

    [34]

    SLAVAKIS K,THEODORIDIS S,YAMADA I. Online Kernel-Based Classification Using Adaptive Projection Algorithms[J]. IEEE Transactions on Signal Processing:a publication of the IEEE Signal Processing Society,2008,56(7):2781-2796.

    [35]

    ZHANG K,ZHU G F,MA J Z,et al. Parameter analysis and estimates for the MODIS evapotranspiration algorithm and multiscale verification[J]. Water Resources Research,2019,55(3):2211-2231. doi: 10.1029/2018WR023485

    [36]

    LIU Y L,ZHOU G M,DU H Q,et al. Response of carbon uptake to abiotic and biotic drivers in an intensively managed Lei bamboo forest[J]. Journal of Environmental Management,2018,223:713-722.

    [37]

    LIU H X,YI Y J,YUE Y S,et al. Reducing the likelihood of carbon loss from wetlands by improving the spatial connections between high carbon patches[J]. Journal of Cleaner Production,2020,267:121819.1-121819.12.

    [38]

    韩智献,仝川,刘白贵,等. 模拟海平面上升和氮负荷增加对河口感潮沼泽湿地CO2垂直交换的影响[J]. 环境科学学报,2021,41(6):2421-2429.

    [39]

    陈小平,刘廷玺,王冠丽,等. 温度和水分对科尔沁草甸湿地净生态系统碳交换量的影响[J]. 应用生态学报,2018,29(5):1523-1534.

  • 加载中

(6)

(8)

计量
  • 文章访问数:  1048
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-09-05
录用日期:  2022-11-14
刊出日期:  2023-02-20

目录