海洋地质数据挖掘系统研发及在海山年龄预测中的应用

任梦姣, 孙记红, 王晓宇, 容伊霖, 白永良. 海洋地质数据挖掘系统研发及在海山年龄预测中的应用[J]. 海洋地质前沿, 2023, 39(2): 79-85. doi: 10.16028/j.1009-2722.2022.251
引用本文: 任梦姣, 孙记红, 王晓宇, 容伊霖, 白永良. 海洋地质数据挖掘系统研发及在海山年龄预测中的应用[J]. 海洋地质前沿, 2023, 39(2): 79-85. doi: 10.16028/j.1009-2722.2022.251
REN Mengjiao, SUN Jihong, WANG Xiaoyu, RONG Yilin, BAI Yongliang. Marine geological data mining system development and its application in seamount age prediction[J]. Marine Geology Frontiers, 2023, 39(2): 79-85. doi: 10.16028/j.1009-2722.2022.251
Citation: REN Mengjiao, SUN Jihong, WANG Xiaoyu, RONG Yilin, BAI Yongliang. Marine geological data mining system development and its application in seamount age prediction[J]. Marine Geology Frontiers, 2023, 39(2): 79-85. doi: 10.16028/j.1009-2722.2022.251

海洋地质数据挖掘系统研发及在海山年龄预测中的应用

  • 基金项目: 中国地质调查局项目(DD20190214,DD20221711);国家自然科学基金面上项目(42176068);山东省自然科学基金面上项目(ZR2020MD065)
详细信息
    作者简介: 任梦姣(1997—),女,在读硕士,主要从事智能海洋地质方面的研究工作. E-mail:renmail1105@163.com
    通讯作者: 孙记红(1984—),男,硕士,高级工程师,主要从事海洋地质大数据及智能化应用方面的研究工作. E-mail:sjihong@mail.cgs.gov.cn
  • 中图分类号: P628.4

Marine geological data mining system development and its application in seamount age prediction

More Information
  • 利用数据挖掘技术分析海洋地质调查数据,以获取其中隐藏信息,对推进海洋地质数据的科学高效利用具有重要意义。在模块化设计原则下,利用Python语言开发海洋地质数据挖掘相关的核心功能,利用WinForm搭建人机交互界面,并通过参数交互的方式实现了界面和后台功能间的互动。基于综合地质地球物理资料,利用软件预测了太平洋海山年龄。预测结果精度高于利用传统克里金插值方法所得结果的精度。应用结果表明,所开发软件的数据预处理、指标分析、综合评价等功能具有很好的实用性。

  • 加载中
  • 图 1  海洋地质调查数据情况

    Figure 1. 

    图 2  海洋地质数据挖掘系统总体架构

    Figure 2. 

    图 3  太平洋地形[40]、海山与热流站位分布[42]

    Figure 3. 

    图 4  基于GA-BP模型的海山年龄实测值与预测值对比

    Figure 4. 

    图 5  基于测试集的GA-BP海山年龄预测值与实测值散点图

    Figure 5. 

    表 1  用于太平洋海山年龄预测的基础数据源

    Table 1.  Data sources for the Pacific seamount age prediction

    数据名称分辨率/弧分发布人备注
    空间重力异常1SANDWELL等[36]卫星测高数据为基础
    磁力异常2MAUS等 [37]4 km高度处的磁异常
    洋壳年龄2MÜLLER等 [38]
    沉积层厚度5STRAUME等[39]
    水深与地形1AMANTE等 [40]
    海底热流站位数据国际热流委员会
    海山年龄点位数据V CLOUARD AND A BONNEVILLE [41]前人成果的汇编
    下载: 导出CSV

    表 2  与海山年龄相关地球物理数据的MIV绝对值

    Table 2.  The absolute mean impact values of the seamount-age related geophysical observables

    地球物理观测值数据类型处理方法|MIV|/Ma
    洋壳年龄网格提取9.23
    重力异常网格提取3.50
    海山高度网格提取1.42
    沉积层厚度网格提取1.08
    磁异常网格提取0.82
    海底热流地点内插0.21
    下载: 导出CSV

    表 3  克里金插值算法、BP和GA-BP算法预测精度对比

    Table 3.  Comparison in prediction accuracy among the Kriging, BP, and GA-BP algorithms

    预测模型RMSE/MaR²
    克里金27.540.60
    BP模型20.350.74
    GA-BP模型9.690.93
    下载: 导出CSV
  • [1]

    LI W L,GAO S Y,HAN C H,et al. A brief analysis on data mining for deep-sea mineral resources based on big data[J]. Procedia Computer Science,2019,154:699-705. doi: 10.1016/j.procs.2019.06.109

    [2]

    杜艳玲. 混合云存储环境下海洋大数据的布局及迁移算法研究[D]. 上海: 上海海洋大学, 2014.

    [3]

    JIANG K,JIANG X. Technological development of ocean mineral resources exploitation[J]. Nonferrous Metals Engineering,2011,1(1):3-8.

    [4]

    HE G,DENG X,YANG S. Geological characteristics of polymetallic nodules in the central Indian Ocean and comparison with those from CC Zone in the eastern Pacific[J]. Marine Geology Quaternary Geology,2011,31(2):21-30. doi: 10.3724/SP.J.1140.2011.02021

    [5]

    HAND D J. Principles of data mining[J]. Drug safety,2007,30(7):621-622. doi: 10.2165/00002018-200730070-00010

    [6]

    ZONGXI Y,JINRONG T,PING Z. Earth science research in US Geological Survey under the big data revolution[J]. Geological Bulletin of China,2013,32(9):1337-1343.

    [7]

    DUNHAM M H. Data mining: Introductory and advanced topics[M]. Pearson Education India, 2006.

    [8]

    SHARMA P,SHARMA S. Past Present & Future of Data Mining[J]. IITM Journal of Information Technology,2018:42.

    [9]

    LI C,YAN W,XIAO K,et al. Analysis and application mode of geological big data[J]. Journal of Geology,2015,39(3):352-357.

    [10]

    LI J. Predictive modelling using random forest and its hybrid methods with geostatistical techniques in marine environmental geosciences[M]//The Proceedings of the Eleventh Australasian Data Mining Conference, 2013.

    [11]

    OBELCZ J, XU K, BENTLEY S J, et al. Sneaky submarine landslides, and how to quantify them: a case study from the Mississippi River Delta front contrasting geophysical and machine learning techniques[C]//AGU Fall Meeting Abstracts, 2017: NH44B-03.

    [12]

    SHENG J,SUN J,BAI Y,et al. Evaluation of hydrocarbon potential using fuzzy AHP-based grey relational analysis:a case study in the Laoshan Uplift,South Yellow Sea,China[J]. Journal of Geophysics Engineering,2020,17(1):189-202. doi: 10.1093/jge/gxz107

    [13]

    刘兰法. 海洋天然气水合物三维地质建模研究[D]. 青岛: 中国石油大学(华东), 2014.

    [14]

    李连伟,许明明,刘展,等. 天然气水合物数据挖掘服务组件的设计与实现[J]. 计算机应用与软件,2016,33(10):32-36. doi: 10.3969/j.issn.1000-386x.2016.10.008

    [15]

    郑文棠. 岭澳核电三期高边坡三维地形可视化[C]//岩石力学与工程的创新和实践: 第十一次全国岩石力学与工程学术大会, 2010: 5.

    [16]

    DOMBI G W,NANDI P,SAXE J M,et al. Prediction of rib fracture injury outcome by an artificial neural network[J]. Journal of Trauma,1995,39(5):915-921. doi: 10.1097/00005373-199511000-00016

    [17]

    JIANG J L,SU X,ZHANG H,et al. A novel approach to active compounds identification based on support vector regression model and mean impact value[J]. Chemical Biology & Drug Design,2013,81(5):650-657.

    [18]

    LI H,ZHONG Z,LI L,et al. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells[J]. Journal of Computational Chemistry,2015,36(14):1036-1046. doi: 10.1002/jcc.23886

    [19]

    ZHENG J,LAN Q,ZHANG X,et al. Prediction of MRI RF exposure for implantable plate devices using artificial neural network[J]. IEEE Transactions on Electromagnetic Compatibility,2020,62(3):673-681. doi: 10.1109/TEMC.2019.2916837

    [20]

    RUMMEL R J. Applied factor analysis[M]. Northwestern University Press, 1988.

    [21]

    郭晓伟. 基于深度学习的车型识别算法与DSP平台实现[D]. 长沙: 国防科学技术大学, 2016.

    [22]

    李静. 煤矿震动波CT反演探测技术的优化与应用[D]. 徐州: 中国矿业大学, 2017.

    [23]

    RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536. doi: 10.1038/323533a0

    [24]

    DING S,SU C,YU J. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review,2011,36(2):153-162. doi: 10.1007/s10462-011-9208-z

    [25]

    BOOKER L B,GOLDBERG D E,HOLLAND J H. Classifier systems and genetic algorithms[J]. Artificial Intelligence,1989,40(1-3):235-282. doi: 10.1016/0004-3702(89)90050-7

    [26]

    TARDUNO J A,GEE J. Large-scale motin between Pacific and Atlantic hotspots[J]. Nature,1995,378(6556):477-480. doi: 10.1038/378477a0

    [27]

    朱本铎,吕文超,张伙带. 中西太平洋海山年龄及其地质意义[J]. 矿床地质,2014:1151-1152. doi: 10.3969/j.issn.0258-7106.2014.06.002

    [28]

    TARDUNO J A,DUNCAN R A,SCHOLL D W,et al. The Emperor Seamounts:southward motion of the Hawaiian Hotspot Plume in earth's mantle[J]. Science,2003,301(5636):1064. doi: 10.1126/science.1086442

    [29]

    WATTS A B,SANDWELL D T,SMITH W H F,et al. Global gravity,bathymetry,and the distribution of submarine volcanism through space and time[J]. Journal of Geophysical Research:Solid Earth,2006,111:B08408.

    [30]

    FAGGION O,PINNA E,SAVELLI C,et al. Geomagnetism and age study of Tyrrhenian seamounts[J]. Geophysical Journal International,1995,123(3):915-930. doi: 10.1111/j.1365-246X.1995.tb06898.x

    [31]

    CANDE S C,KENT D V. Ultrahigh resolution marine magnetic anomaly profiles:A record of continuous paleointensity variations?[J]. Journal of Geophysical Research Solid Earth,1992,97(B11):15075-15083. doi: 10.1029/92JB01090

    [32]

    SETON M,MVLLER R D,ZAHIROVIC S,et al. A Global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochemistry,Geophysics,Geosystems,2020,21(10):e2020GC009214.

    [33]

    VOLKER D,GEERSEN J,CONTRERAS-REYES E,et al. Sedimentary fill of the Chile Trench (32–46°S):volumetric distribution and causal factors[J]. Journal of the Geological Society,2013,170(5):723. doi: 10.1144/jgs2012-119

    [34]

    CLAGUE D A,DALRYMPLE G B. Cretaceous K‐Ar ages of volcanic rocks from the Musicians Seamounts and the Hawaiian Ridge[J]. Geophysical Research Letters,2013,2(7):305-308.

    [35]

    HARRIS R N,FISHER A T,CHAPMAN D S. Fluid flow through seamounts and implications for global mass fluxes[J]. Geology,2004,32(8):725-728. doi: 10.1130/G20387.1

    [36]

    SANDWELL D T,MUELLER R D,SMITH W H F,et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science,2014,346(6205):65-7. doi: 10.1126/science.1258213

    [37]

    MAUS S,BARCKHAUSEN U,BERKENBOSCH H,et al. EMAG2:a 2–arc min resolution earth magnetic anomaly grid compiled from satellite,airborne,and marine magnetic measurements[J]. Geochemistry Geophysics Geosystems,2009,10(8):Q08005.

    [38]

    MVLLER R D. Age,spreading rates,and spreading asymmetry of the world's ocean crust[J]. Geochemistry Geophysics Geosystems,2008,9(4):Q04006.

    [39]

    STRAUME E O,GAINA C,MEDVEDEV S,et al. GlobSed:updated total sediment thickness in the World's Oceans[J]. Geochemistry Geophysics Geosystems,2019,20(4):1756-1772. doi: 10.1029/2018GC008115

    [40]

    AMANTE C. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis[EB/OL]. http://www.ngdc.noaa.gov/mgg/global/global.html, 2009.

    [41]

    CLOUARD V,BONNEVILLE A. Ages of seamounts,islands,and plateaus on the Pacific plate[J]. Geological Society of America Bulletin,2005:388.

    [42]

    YESSON C,CLARK M R,TAYLOR M L,et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep Sea Research Part I Oceanographic Research Papers,2011,58(4):442-453. doi: 10.1016/j.dsr.2011.02.004

    [43]

    LEE H B,OH J K,PARK C K,et al. Geophysical and sedimentological characteristics of Lomilik Seamount,West Pacific[J]. Ocean & Polar Research,2004,26(2):207-218.

    [44]

    CARBOTTE S M,DIXON J M,FARRAR E,et al. Geological and geophysical characteristics of the Tuzo Wilson Seamounts:implications for plate geometry in the vicinity of the Pacific – North America – Explorer triple junction[J]. Canadian Journal of Earth ences,1989,26(11):2365-2384. doi: 10.1139/e89-202

    [45]

    KIM C H. Magnetic characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin,the South Western Pacific[J]. Economic and Environmental Geology,2014,47(4):395-404. doi: 10.9719/EEG.2014.47.4.395

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1253
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2022-09-05
录用日期:  2022-11-14
刊出日期:  2023-02-20

目录