浅谈深海多金属硫化物采矿的环境影响和保护措施

付全有, 武光海, 韩沉花, 高发荣. 浅谈深海多金属硫化物采矿的环境影响和保护措施[J]. 海洋地质前沿, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266
引用本文: 付全有, 武光海, 韩沉花, 高发荣. 浅谈深海多金属硫化物采矿的环境影响和保护措施[J]. 海洋地质前沿, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266
FU Quanyou, WU Guanghai, HAN Chenhua, GAO Farong. An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining[J]. Marine Geology Frontiers, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266
Citation: FU Quanyou, WU Guanghai, HAN Chenhua, GAO Farong. An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining[J]. Marine Geology Frontiers, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266

浅谈深海多金属硫化物采矿的环境影响和保护措施

  • 基金项目: 浙江省重点研发项目(2021C03183);中国大洋协会专项课题(DY135-E2-1-01);中央级公益性科研院所基本科研业务专项资金项目(JG1521)
详细信息
    作者简介: 付全有(1999—),在读硕士,主要从事大洋矿产资源与环境等方面的研究工作. E-mail:18181342096@163.com
    通讯作者: 韩沉花(1984—),女,博士,助理研究员,主要从事海洋探测技术方面的研究工作. E-mail:hanchenhua@sio.org.cn
  • 中图分类号: P736;P744

An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining

More Information
  • 深海矿产资源开发及其环境保护问题近年来重新成为一个研究热点。深海环境极其复杂,人类对深海生物及其生态系统的了解仍十分有限,而深海采矿不可避免会对海洋生态环境造成影响,如不加强对采矿环境影响的研究并制定相关的保护措施,未来的深海采矿对海洋环境的破坏将无法估量。本文从深海采矿发展由来、多金属硫化物矿区环境、深海采矿技术发展、采矿环境影响和保护措施等几方面全链条系统地梳理了前人的研究成果,提出了深海采矿环境影响评价的发展方向,从而为今后开展深海采矿环境监测与保护提供参考。

  • 加载中
  • 图 1  深海多金属硫化物矿区生态环境

    Figure 1. 

    图 2  深海采矿技术发展简史

    Figure 2. 

    图 3  深海多金属硫化物采矿对水体环境与海洋生物的影响示意图[41]

    Figure 3. 

    表 1  各国或组织进行的深海采矿环境影响或海底扰动实验的基本数据

    Table 1.  Basic data on deep-sea mining environmental impact and seabed disturbance experiments conducted by countries or organizations in the world

    时间/年名称国家
    /组织
    海底区域持续
    时间
    面积
    /距离
    1978深海采矿环境研究 (DOMES)美国克拉里昂-克里帕顿断裂带7 200 min
    1989扰动和再迁入实验 (DISCOL)德国秘鲁盆地12 d10.8 km2
    1993美国国家海洋与大气管理局底层影响实验(NOAA-BIE)美国克拉里昂-克里帕顿断裂带5 290 min141 km
    1995日本深海影响实验(JET)日本克拉里昂-克里帕顿断裂带1 227 min33 km
    1997印度深海环境实验(INDEX)印度中印度洋盆地2 534 min88 km
    1995“海金联”底层影响实验(IOM-BIE)国际海洋金属联合组织克拉里昂-克里帕顿断裂带1 130 min35 km
    下载: 导出CSV
  • [1]

    United States, Congress, Senate, Committee On Interior And Insular Affairs, Subcommittee On Minerals, Materials, And Fuels. Current developments in deep seabed mining: Hearing before the Subcommittee on Minerals, Materials, and Fuels of the Committee on Interior and Insular Affairs[M]. University of Michigan Library, 1975: 1-3.

    [2]

    MURPHY J M. Deep ocean mining:beginning of a new era[J]. Case Western Reserve Journal of International Law,1976,8(1):46.

    [3]

    DUNN D C,VAN DOVER C L,ETTER R J,et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining[J]. Science Advances,2018,4(7):4313. doi: 10.1126/sciadv.aar4313

    [4]

    International Seabed Authority (ISA). Environmental Management Plan for the Clarion-Clipperton Zone(ISBA17/LTC/7)[EB/OL]. [2022-9-10]. https://isa.org.jm/files/files/documents/isba-17ltc-7_1.pdf.

    [5]

    JOHAN F. Solwara 1 Deep Sea Mining Project: [R/OL]. Bank Track. 2016.

    [6]

    SHARMA R. Deep-sea mining: resource potential, technical and environmental considerations[M]. Cham: Springer International Publishing, 2017: 3-21.

    [7]

    VON DAMM K L. Evolution of the hydrothermal system at East Pacific Rise 9°50'N:Geochemical evidence for changes in the upper oceanic crust[J]. Washington DC American Geophysical Union Geophysical Monograph Series,2004,148:285-304.

    [8]

    HERZIG P M. Economic potential of sea–floor massive sulphide deposits:ancient and modern[J]. Philosophical Transactions of the Royal Society of London,1999,357(1753):861-875. doi: 10.1098/rsta.1999.0355

    [9]

    BAKER M,GERMAN C. Going for gold! who will win the race to exploit ores from the deep?[J]. Ocean Challenge,2008,16(1):10-17.

    [10]

    HANNINGTON M D, JAMIESON J, PETERSEN S. Seafloor massive sulfide deposits: continuing efforts toward a global estimate of seafloor massive sulfides[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1-3.

    [11]

    MONECKE T,PETERSEN S,HANNINGTON M D,et al. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions[J]. Society of Economic Geologists,2016,18:245-306.

    [12]

    MURTON B. Seafloor mining:the future or just another pipe dream?[J]. Underwater Technology,2013,31(2):53-54. doi: 10.3723/ut.31.053

    [13]

    VAN DOVER C L. The ecology of hydrothermal vents[M]. Princeton New Jersey: Princeton University Press, 2000: 424.

    [14]

    GRASSLE J F. Hydrothermal vent animals:distribution and biology[J]. Science,1985,229(4715):713-717. doi: 10.1126/science.229.4715.713

    [15]

    RINKE C,LEE R W. Pathways,activities and thermal stability of anaerobic and aerobic enzymes in thermophilic vent paralvinellid worms[J]. Marine Ecology Progress Series,2009,382:99-112. doi: 10.3354/meps07980

    [16]

    BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Megabenthic assemblage structure on three New Zealand seamounts:implications for seafloor massive sulfide mining[J]. Marine Ecology Progress Series,2015,523:1-14. doi: 10.3354/meps11239

    [17]

    GALKIN S V. Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea)[J]. Marine Geology,1997,142(1/4):197-206. doi: 10.1016/S0025-3227(97)00051-0

    [18]

    FLORES G E,WAGNER I D,LIU Y,et al. Distribution,abundance,and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2”[J]. Frontiers in Microbiology,2012,3:47.

    [19]

    VAN DOVER C L. Inactive sulfide ecosystems in the deep sea:a review[J]. Frontiers in Marine Science,2019,6:461. doi: 10.3389/fmars.2019.00461

    [20]

    BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Mining of deep-sea seafloor massive sulfides:a review of the deposits,their benthic communities,impacts from mining,regulatory frameworks and management strategies[J]. Ocean and Coastal Management,2013,84:54-67.

    [21]

    GOLLNER S,MILJUTINA M,BRIGHT M. Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species[J]. Organisms Diversity and Evolution,2013,13(3):349-371.

    [22]

    LEVIN L A,MENDOZA G F,KONOTCHICK T,et al. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1632-1648. doi: 10.1016/j.dsr2.2009.05.010

    [23]

    ERICKSON K L,MACKO S A,VAN DOVER C L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin)[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1577-1585. doi: 10.1016/j.dsr2.2009.05.002

    [24]

    杨建民,刘磊,吕海宁,等. 我国深海矿产资源开发装备研发现状与展望[J]. 中国工程科学,2020,22(6):1-9.

    [25]

    刘磊. 深海采矿水力提升固液两相流动力学特性研究[D]. 上海: 上海交通大学, 2019.

    [26]

    李艳,梁科森,李皓. 深海多金属硫化物开采技术[J]. 中国有色金属学报,2021,31(10):2889-2901.

    [27]

    International Seabed Authority (ISA). Polymetallic nodule mining technology-current trends and challenges ahead[M]. International Seabed Authority, 2008: 54-81.

    [28]

    THIEL H. From MESEDA to DISCOL:a new approach to deep-sea mining risk assessments[J]. Marine Mining,1991,10(4):369-386.

    [29]

    YAMAKADO N, HANDA K, USAMI T. Model tests on continuous line bucket mining system[C]. Offshore Technology Conference, OnePetro, 1978.

    [30]

    MASUDA Y, CRUICKSHANK M J, MERO J L. Continuous bucket line dredging at 12000 feet[C]. Dallas: Offshore Technology Conference, 1971: 873-841.

    [31]

    LEMERCIER P,MARCHAL P,MOREAU J P,et al. Submarine vehicle for dredging and raising minerals resting on the sea bed at great depths[J]. United States Patent,1982,9:21-56.

    [32]

    BROCKETT F H, HUIZINGH J P, MCFARLANE J A R. Updated analysis of the capital and operating costs of a polymetallic nodule deep ocean mining system developed in the 1970s[J]. Polymetallic Nodule Mining Technology: Current Trends and Challenges Ahead, 2008: 46-65.

    [33]

    田先德,杨锦坤,韩春花,等. 国际海域矿产资源勘探与开采技术现状与展望[J]. 海洋信息,2021,36(2):28-32. doi: 10.19661/j.cnki.mi.2021.02.005

    [34]

    STEINER R. Independent review of the environmental impact statement for the proposed nautilus minerals Solwara 1 seabed mining project, Papua New Guinea[J]. Bismarck-Solomon Indigenous Peoples Council. 2009.

    [35]

    FAIRLEY P. Robot miners of the briny deep[J]. IEEE Spectrum,2016,1(53):44-47.

    [36]

    康娅娟,刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报,2021,31(10):2848-2859.

    [37]

    SNELGROVE P V R, SMITH C R. A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor[M]. Oceanography and Marine Biology, 2002: 319-320.

    [38]

    BOOMSMA W, WARNAARS J. Blue mining[C]. IEEE Underwater Technology (UT), 2015: 1-4.

    [39]

    SPAGNOLI G,MIEDEMA S A,Herrmann C,et al. Preliminary design of a trench cutter system for deep-sea mining applications under hyperbaric conditions[J]. IEEE Journal of Oceanic Engineering,2015,41(4):930-943.

    [40]

    OKAMOTO N, SHIOKAWA S, KAWANO S, et al. Current status of Japan's activities for deep-sea commercial mining campaign[C]//OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018: 1-7.

    [41]

    MILLER K A,THOMPSON K F,JOHNSTON P,et al. An overview of seabed mining including the current state of development,environmental impacts,and knowledge gaps[J]. Frontiers in Marine Science,2018,4:418. doi: 10.3389/fmars.2017.00418

    [42]

    USUI A,SOMEYA M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society,London,Special Publications,1997,119(1):177-198. doi: 10.1144/GSL.SP.1997.119.01.12

    [43]

    GILLARD B,PURKIANI K,CHATZIEVANGELOU D,et al. Physical and hydrodynamic properties of deep sea mining-generated,abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific)[J]. Elementa:Science of the Anthropocene,2019,7(1):1-14.

    [44]

    SCHRIEVER G, KOSCHINSKY A, BLUHM H, et al. Cruise Report ATESEPP: Auswirkungen technischer Eingriffe in das Ökosystem der Tiefsee im Sued-Ost-Pazifik vor Peru (Impacts of potential technical interventions on the deep-sea ecosystem of the southeast Pacific off Peru): Sonne cruise 106: January 1-March 9, 1996, Balboa/Panama-Balboa/Panama[M]. Institut für Hydrobiologie und Fischereiwissenschaft, 1996.

    [45]

    BILENKER L D,ROMANO G Y,MCKIBBEN M A. Kinetics of sulfide mineral oxidation in seawater:implications for acid generation during in situ mining of seafloor hydrothermal vent deposits[J]. Applied geochemistry,2016,75:20-31. doi: 10.1016/j.apgeochem.2016.10.010

    [46]

    ROLINSKI S,SEGSCHNEIDER J,SÜNDERMANN J. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations[J]. Oceanography,2001,48(17/18):3469-3485.

    [47]

    BURNS R E. Assessment of environmental effects of deep ocean mining of manganese nodules[J]. Helgolä nder Meeresuntersuchungen,1980,33(1):433-442.

    [48]

    LOBEL P S, KAATZ I M, RICE A N. Acoustical behavior of coral reef fishes[J]. Marine Ecology Progress Series, 2010: 307-386.

    [49]

    LECCHINI D,BERTUCCI F,GACHE C,et al. Boat noise prevents soundscape-based habitat selection by coral planulae[J]. Scientific Reports,2018,8(1):1-9.

    [50]

    LIN T H,CHEN C,WATANABE H K,et al. Using soundscapes to assess deep-sea benthic ecosystems[J]. Trends in Ecology and Evolution,2019,34(12):1066-1069.

    [51]

    JOHN S P. Ocean Floor Mining[M]. USA: Noyes Data Corp., 1975: 201.

    [52]

    MARTINS I,GOULART J,MARTINS E,et al. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario[J]. Aquatic Toxicology,2017,193:40-49. doi: 10.1016/j.aquatox.2017.10.004

    [53]

    VAN DER GRIENT J M A,DRAZEN J C. Potential spatial intersection between high-seas fisheries and deep-sea mining in international waters[J]. Marine Policy,2021,129:104564. doi: 10.1016/j.marpol.2021.104564

    [54]

    INGOLE B S, ANSARI Z A, MATONDKAR S G P, et al. Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber[C]. Third ISOPE Ocean Mining Symposium, OnePetro, 1999.

    [55]

    RODRIGUES N,SHARMA R,NATH B N. Impact of benthic disturbance on megafauna in Central Indian Basin[J]. Oceanography,2001,48(16):3411-3426.

    [56]

    TKATCHENKO G, RADZIEJEWSKA T, STOYANOVA V, et al. Benthic impact experiment in the IOM pioneer area: testing for effects of deep-sea disturbance[C]. Int Seminar on Deep Sea-bed Mining Tech, China Ocean Mineral Resources R&D Assoc, Beijing, 1996.

    [57]

    RAGHUKUMAR C,BHARATHI P A L,ANSARI Z A,et al. Bacterial standing stock,meiofauna and sediment–nutrient characteristics:indicators of benthic disturbance in the Central Indian Basin[J]. Oceanography,2001,48(16):3381-3399.

    [58]

    FOELL E J, SCHRIEVER G, BLUHM H, et al. Disturbance and recolonization experiment in the abyssal South Pacific Ocean (diseol): an update[C]. Offshore Technology Conference, OnePetro, 1992: 25–34.

    [59]

    SHARMA R,NATH B N,PARTHIBAN G,et al. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining[J]. Oceanography,2001,48(16):3363-3380.

    [60]

    PHILLIPS B T. Beyond the vent:new perspectives on hydrothermal plumes and pelagic biology[J]. Oceanography,2017,137:480-485.

    [61]

    高岩. 国际海底区域环境管理计划进程、挑战与中国参与[J]. 环境保护,2021,49(23):71-76. doi: 10.3969/j.issn.0253-9705.2021.23.hjbh202123017

    [62]

    SHARMA R. Deep-sea mining:Economic,technical,technological,and environmental considerations for sustainable development[J]. Marine Technology Society Journal,2011,45:28-41. doi: 10.4031/MTSJ.45.5.2

    [63]

    Environmental Protection Authority of New Zealand. Trans-Tasman Resources Ltd Marine Consent Decision[R]. New Zealand Government, 2014.

    [64]

    International Seabed Authority. Standardization of environmental data and information-development of guidelines[C]//Proceedings of the International Seabed Authority’s Workshop. Kingston, Jamaica: International Seabed Authority, 2001.

    [65]

    International Seabed Authority. Regulations on prospecting and exploration for polymetallic sulphides in the area International Seabed Authority[C]//130th Meeting of the Assembly of the International Seabed Authority. Kingston, Jamaica: International Seabed Authority, 2010: 49.

    [66]

    ARDRON J, ARNAUD-HAOND S, Beaudoin Y, et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach[R]. Kingston, Jamaica: International Seabed Authority.

    [67]

    VAN DOVER C L,SMITH C R,ARDRON J,et al. Designating networks of chemosynthetic ecosystem reserves in the deep sea[J]. Marine Policy,2012,36(2):378-381. doi: 10.1016/j.marpol.2011.07.002

    [68]

    MOORE T S,MULLAUGH K M,HOLYOKE R R,et al. Marine chemical technology and sensors for marine waters:potentials and limits[J]. Annual Review of Marine Science,2009,1:91-115. doi: 10.1146/annurev.marine.010908.163817

    [69]

    QAZI H H,MOHAMMAD A B,AKRAM M. Recent progress in optical chemical sensors[J]. Sensors,2012,12(12):16522-16556. doi: 10.3390/s121216522

    [70]

    FENGHUA L,YANGUO L,HAIBIN W,et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences (Chinese Version),2019,34(3):321-330.

    [71]

    贾凌霄,马冰,于洋,等. 基于SWOT分析的深海采矿发展策略研究[J]. 中国矿业,2021,30(7):8. doi: 10.12075/j.issn.1004-4051.2021.07.028

    [72]

    ALEYNIK D,INALL M E,DALE A,et al. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific[J]. Scientific Reports,2017,7(1):1-14. doi: 10.1038/s41598-016-0028-x

    [73]

    NARITA T, OSHIKA J, OKAMOTO N, et al. Summary of environmental impact assessment for mining seafloor massive sulfides in Japan[J]. Journal of Shipping and Ocean Engineering, 2015, 5: 103-114.

    [74]

    SUZUKI K, YOSHIDA K. Mining in hydrothermal vent Fields: predicting and minimizing impacts on ecosystems with the use of a mathematical modeling framework[M]. Environmental Issues of Deep-Sea Mining, 2019: 231-253.

    [75]

    CLARK M R,DURDEN J M,CHRISTIANSEN S. Environmental Impact Assessments for deep-sea mining:can we improve their future effectiveness?[J]. Marine Policy,2020,114:1-9.

    [76]

    LE J T,LEVIN L A,CARSON R T. Incorporating ecosystem services into environmental management of deep-seabed mining[J]. Oceanography,2017,137:486-503.

    [77]

    GROFFMAN P M,BARON J S,BLETT T,et al. Ecological thresholds:the key to successful environmental management or an important concept with no practical application?[J]. Ecosystems,2006,9(1):1-13. doi: 10.1007/s10021-003-0142-z

  • 加载中

(3)

(1)

计量
  • 文章访问数:  822
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2022-09-15
刊出日期:  2023-12-28

目录