An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining
-
摘要:
深海矿产资源开发及其环境保护问题近年来重新成为一个研究热点。深海环境极其复杂,人类对深海生物及其生态系统的了解仍十分有限,而深海采矿不可避免会对海洋生态环境造成影响,如不加强对采矿环境影响的研究并制定相关的保护措施,未来的深海采矿对海洋环境的破坏将无法估量。本文从深海采矿发展由来、多金属硫化物矿区环境、深海采矿技术发展、采矿环境影响和保护措施等几方面全链条系统地梳理了前人的研究成果,提出了深海采矿环境影响评价的发展方向,从而为今后开展深海采矿环境监测与保护提供参考。
Abstract:The exploitation of deep-sea mineral resources and its environmental protection have become a research hotspot in recent years. The deep-sea environment is extremely complex and human’s understanding of deep-sea organisms and their ecosystems are still very limited, while deep-sea mining will inevitably cause damage to the marine ecological environment. If the research on the impact of mining on the environment is not strengthened and relevant protection measures are formulated, the damage to the marine environment from deep-sea mining would be immeasurable in the future. Therefore, previous research results on the origin of deep-sea mining, the environment of polymetallic sulfide mining areas, the development of deep-sea mining technology, the impact of mining environment, and protection measures were studied systematically, and puts forward the development direction of deep-sea mining environmental impact assessment, so as to provide a reference for the monitoring and protection of deep-sea mining environment in the future.
-
图 3 深海多金属硫化物采矿对水体环境与海洋生物的影响示意图[41]
Figure 3.
表 1 各国或组织进行的深海采矿环境影响或海底扰动实验的基本数据
Table 1. Basic data on deep-sea mining environmental impact and seabed disturbance experiments conducted by countries or organizations in the world
时间/年 名称 国家
/组织海底区域 持续
时间面积
/距离1978 深海采矿环境研究 (DOMES) 美国 克拉里昂-克里帕顿断裂带 7 200 min ~ 1989 扰动和再迁入实验 (DISCOL) 德国 秘鲁盆地 12 d 10.8 km2 1993 美国国家海洋与大气管理局底层影响实验(NOAA-BIE) 美国 克拉里昂-克里帕顿断裂带 5 290 min 141 km 1995 日本深海影响实验(JET) 日本 克拉里昂-克里帕顿断裂带 1 227 min 33 km 1997 印度深海环境实验(INDEX) 印度 中印度洋盆地 2 534 min 88 km 1995 “海金联”底层影响实验(IOM-BIE) 国际海洋金属联合组织 克拉里昂-克里帕顿断裂带 1 130 min 35 km -
[1] United States, Congress, Senate, Committee On Interior And Insular Affairs, Subcommittee On Minerals, Materials, And Fuels. Current developments in deep seabed mining: Hearing before the Subcommittee on Minerals, Materials, and Fuels of the Committee on Interior and Insular Affairs[M]. University of Michigan Library, 1975: 1-3.
[2] MURPHY J M. Deep ocean mining:beginning of a new era[J]. Case Western Reserve Journal of International Law,1976,8(1):46.
[3] DUNN D C,VAN DOVER C L,ETTER R J,et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining[J]. Science Advances,2018,4(7):4313. doi: 10.1126/sciadv.aar4313
[4] International Seabed Authority (ISA). Environmental Management Plan for the Clarion-Clipperton Zone(ISBA17/LTC/7)[EB/OL]. [2022-9-10]. https://isa.org.jm/files/files/documents/isba-17ltc-7_1.pdf.
[5] JOHAN F. Solwara 1 Deep Sea Mining Project: [R/OL]. Bank Track. 2016.
[6] SHARMA R. Deep-sea mining: resource potential, technical and environmental considerations[M]. Cham: Springer International Publishing, 2017: 3-21.
[7] VON DAMM K L. Evolution of the hydrothermal system at East Pacific Rise 9°50'N:Geochemical evidence for changes in the upper oceanic crust[J]. Washington DC American Geophysical Union Geophysical Monograph Series,2004,148:285-304.
[8] HERZIG P M. Economic potential of sea–floor massive sulphide deposits:ancient and modern[J]. Philosophical Transactions of the Royal Society of London,1999,357(1753):861-875. doi: 10.1098/rsta.1999.0355
[9] BAKER M,GERMAN C. Going for gold! who will win the race to exploit ores from the deep?[J]. Ocean Challenge,2008,16(1):10-17.
[10] HANNINGTON M D, JAMIESON J, PETERSEN S. Seafloor massive sulfide deposits: continuing efforts toward a global estimate of seafloor massive sulfides[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1-3.
[11] MONECKE T,PETERSEN S,HANNINGTON M D,et al. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions[J]. Society of Economic Geologists,2016,18:245-306.
[12] MURTON B. Seafloor mining:the future or just another pipe dream?[J]. Underwater Technology,2013,31(2):53-54. doi: 10.3723/ut.31.053
[13] VAN DOVER C L. The ecology of hydrothermal vents[M]. Princeton New Jersey: Princeton University Press, 2000: 424.
[14] GRASSLE J F. Hydrothermal vent animals:distribution and biology[J]. Science,1985,229(4715):713-717. doi: 10.1126/science.229.4715.713
[15] RINKE C,LEE R W. Pathways,activities and thermal stability of anaerobic and aerobic enzymes in thermophilic vent paralvinellid worms[J]. Marine Ecology Progress Series,2009,382:99-112. doi: 10.3354/meps07980
[16] BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Megabenthic assemblage structure on three New Zealand seamounts:implications for seafloor massive sulfide mining[J]. Marine Ecology Progress Series,2015,523:1-14. doi: 10.3354/meps11239
[17] GALKIN S V. Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea)[J]. Marine Geology,1997,142(1/4):197-206. doi: 10.1016/S0025-3227(97)00051-0
[18] FLORES G E,WAGNER I D,LIU Y,et al. Distribution,abundance,and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2”[J]. Frontiers in Microbiology,2012,3:47.
[19] VAN DOVER C L. Inactive sulfide ecosystems in the deep sea:a review[J]. Frontiers in Marine Science,2019,6:461. doi: 10.3389/fmars.2019.00461
[20] BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Mining of deep-sea seafloor massive sulfides:a review of the deposits,their benthic communities,impacts from mining,regulatory frameworks and management strategies[J]. Ocean and Coastal Management,2013,84:54-67.
[21] GOLLNER S,MILJUTINA M,BRIGHT M. Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species[J]. Organisms Diversity and Evolution,2013,13(3):349-371.
[22] LEVIN L A,MENDOZA G F,KONOTCHICK T,et al. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1632-1648. doi: 10.1016/j.dsr2.2009.05.010
[23] ERICKSON K L,MACKO S A,VAN DOVER C L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin)[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1577-1585. doi: 10.1016/j.dsr2.2009.05.002
[24] 杨建民,刘磊,吕海宁,等. 我国深海矿产资源开发装备研发现状与展望[J]. 中国工程科学,2020,22(6):1-9.
[25] 刘磊. 深海采矿水力提升固液两相流动力学特性研究[D]. 上海: 上海交通大学, 2019.
[26] 李艳,梁科森,李皓. 深海多金属硫化物开采技术[J]. 中国有色金属学报,2021,31(10):2889-2901.
[27] International Seabed Authority (ISA). Polymetallic nodule mining technology-current trends and challenges ahead[M]. International Seabed Authority, 2008: 54-81.
[28] THIEL H. From MESEDA to DISCOL:a new approach to deep-sea mining risk assessments[J]. Marine Mining,1991,10(4):369-386.
[29] YAMAKADO N, HANDA K, USAMI T. Model tests on continuous line bucket mining system[C]. Offshore Technology Conference, OnePetro, 1978.
[30] MASUDA Y, CRUICKSHANK M J, MERO J L. Continuous bucket line dredging at 12000 feet[C]. Dallas: Offshore Technology Conference, 1971: 873-841.
[31] LEMERCIER P,MARCHAL P,MOREAU J P,et al. Submarine vehicle for dredging and raising minerals resting on the sea bed at great depths[J]. United States Patent,1982,9:21-56.
[32] BROCKETT F H, HUIZINGH J P, MCFARLANE J A R. Updated analysis of the capital and operating costs of a polymetallic nodule deep ocean mining system developed in the 1970s[J]. Polymetallic Nodule Mining Technology: Current Trends and Challenges Ahead, 2008: 46-65.
[33] 田先德,杨锦坤,韩春花,等. 国际海域矿产资源勘探与开采技术现状与展望[J]. 海洋信息,2021,36(2):28-32. doi: 10.19661/j.cnki.mi.2021.02.005
[34] STEINER R. Independent review of the environmental impact statement for the proposed nautilus minerals Solwara 1 seabed mining project, Papua New Guinea[J]. Bismarck-Solomon Indigenous Peoples Council. 2009.
[35] FAIRLEY P. Robot miners of the briny deep[J]. IEEE Spectrum,2016,1(53):44-47.
[36] 康娅娟,刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报,2021,31(10):2848-2859.
[37] SNELGROVE P V R, SMITH C R. A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor[M]. Oceanography and Marine Biology, 2002: 319-320.
[38] BOOMSMA W, WARNAARS J. Blue mining[C]. IEEE Underwater Technology (UT), 2015: 1-4.
[39] SPAGNOLI G,MIEDEMA S A,Herrmann C,et al. Preliminary design of a trench cutter system for deep-sea mining applications under hyperbaric conditions[J]. IEEE Journal of Oceanic Engineering,2015,41(4):930-943.
[40] OKAMOTO N, SHIOKAWA S, KAWANO S, et al. Current status of Japan's activities for deep-sea commercial mining campaign[C]//OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018: 1-7.
[41] MILLER K A,THOMPSON K F,JOHNSTON P,et al. An overview of seabed mining including the current state of development,environmental impacts,and knowledge gaps[J]. Frontiers in Marine Science,2018,4:418. doi: 10.3389/fmars.2017.00418
[42] USUI A,SOMEYA M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society,London,Special Publications,1997,119(1):177-198. doi: 10.1144/GSL.SP.1997.119.01.12
[43] GILLARD B,PURKIANI K,CHATZIEVANGELOU D,et al. Physical and hydrodynamic properties of deep sea mining-generated,abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific)[J]. Elementa:Science of the Anthropocene,2019,7(1):1-14.
[44] SCHRIEVER G, KOSCHINSKY A, BLUHM H, et al. Cruise Report ATESEPP: Auswirkungen technischer Eingriffe in das Ökosystem der Tiefsee im Sued-Ost-Pazifik vor Peru (Impacts of potential technical interventions on the deep-sea ecosystem of the southeast Pacific off Peru): Sonne cruise 106: January 1-March 9, 1996, Balboa/Panama-Balboa/Panama[M]. Institut für Hydrobiologie und Fischereiwissenschaft, 1996.
[45] BILENKER L D,ROMANO G Y,MCKIBBEN M A. Kinetics of sulfide mineral oxidation in seawater:implications for acid generation during in situ mining of seafloor hydrothermal vent deposits[J]. Applied geochemistry,2016,75:20-31. doi: 10.1016/j.apgeochem.2016.10.010
[46] ROLINSKI S,SEGSCHNEIDER J,SÜNDERMANN J. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations[J]. Oceanography,2001,48(17/18):3469-3485.
[47] BURNS R E. Assessment of environmental effects of deep ocean mining of manganese nodules[J]. Helgolä nder Meeresuntersuchungen,1980,33(1):433-442.
[48] LOBEL P S, KAATZ I M, RICE A N. Acoustical behavior of coral reef fishes[J]. Marine Ecology Progress Series, 2010: 307-386.
[49] LECCHINI D,BERTUCCI F,GACHE C,et al. Boat noise prevents soundscape-based habitat selection by coral planulae[J]. Scientific Reports,2018,8(1):1-9.
[50] LIN T H,CHEN C,WATANABE H K,et al. Using soundscapes to assess deep-sea benthic ecosystems[J]. Trends in Ecology and Evolution,2019,34(12):1066-1069.
[51] JOHN S P. Ocean Floor Mining[M]. USA: Noyes Data Corp., 1975: 201.
[52] MARTINS I,GOULART J,MARTINS E,et al. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario[J]. Aquatic Toxicology,2017,193:40-49. doi: 10.1016/j.aquatox.2017.10.004
[53] VAN DER GRIENT J M A,DRAZEN J C. Potential spatial intersection between high-seas fisheries and deep-sea mining in international waters[J]. Marine Policy,2021,129:104564. doi: 10.1016/j.marpol.2021.104564
[54] INGOLE B S, ANSARI Z A, MATONDKAR S G P, et al. Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber[C]. Third ISOPE Ocean Mining Symposium, OnePetro, 1999.
[55] RODRIGUES N,SHARMA R,NATH B N. Impact of benthic disturbance on megafauna in Central Indian Basin[J]. Oceanography,2001,48(16):3411-3426.
[56] TKATCHENKO G, RADZIEJEWSKA T, STOYANOVA V, et al. Benthic impact experiment in the IOM pioneer area: testing for effects of deep-sea disturbance[C]. Int Seminar on Deep Sea-bed Mining Tech, China Ocean Mineral Resources R&D Assoc, Beijing, 1996.
[57] RAGHUKUMAR C,BHARATHI P A L,ANSARI Z A,et al. Bacterial standing stock,meiofauna and sediment–nutrient characteristics:indicators of benthic disturbance in the Central Indian Basin[J]. Oceanography,2001,48(16):3381-3399.
[58] FOELL E J, SCHRIEVER G, BLUHM H, et al. Disturbance and recolonization experiment in the abyssal South Pacific Ocean (diseol): an update[C]. Offshore Technology Conference, OnePetro, 1992: 25–34.
[59] SHARMA R,NATH B N,PARTHIBAN G,et al. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining[J]. Oceanography,2001,48(16):3363-3380.
[60] PHILLIPS B T. Beyond the vent:new perspectives on hydrothermal plumes and pelagic biology[J]. Oceanography,2017,137:480-485.
[61] 高岩. 国际海底区域环境管理计划进程、挑战与中国参与[J]. 环境保护,2021,49(23):71-76. doi: 10.3969/j.issn.0253-9705.2021.23.hjbh202123017
[62] SHARMA R. Deep-sea mining:Economic,technical,technological,and environmental considerations for sustainable development[J]. Marine Technology Society Journal,2011,45:28-41. doi: 10.4031/MTSJ.45.5.2
[63] Environmental Protection Authority of New Zealand. Trans-Tasman Resources Ltd Marine Consent Decision[R]. New Zealand Government, 2014.
[64] International Seabed Authority. Standardization of environmental data and information-development of guidelines[C]//Proceedings of the International Seabed Authority’s Workshop. Kingston, Jamaica: International Seabed Authority, 2001.
[65] International Seabed Authority. Regulations on prospecting and exploration for polymetallic sulphides in the area International Seabed Authority[C]//130th Meeting of the Assembly of the International Seabed Authority. Kingston, Jamaica: International Seabed Authority, 2010: 49.
[66] ARDRON J, ARNAUD-HAOND S, Beaudoin Y, et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach[R]. Kingston, Jamaica: International Seabed Authority.
[67] VAN DOVER C L,SMITH C R,ARDRON J,et al. Designating networks of chemosynthetic ecosystem reserves in the deep sea[J]. Marine Policy,2012,36(2):378-381. doi: 10.1016/j.marpol.2011.07.002
[68] MOORE T S,MULLAUGH K M,HOLYOKE R R,et al. Marine chemical technology and sensors for marine waters:potentials and limits[J]. Annual Review of Marine Science,2009,1:91-115. doi: 10.1146/annurev.marine.010908.163817
[69] QAZI H H,MOHAMMAD A B,AKRAM M. Recent progress in optical chemical sensors[J]. Sensors,2012,12(12):16522-16556. doi: 10.3390/s121216522
[70] FENGHUA L,YANGUO L,HAIBIN W,et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences (Chinese Version),2019,34(3):321-330.
[71] 贾凌霄,马冰,于洋,等. 基于SWOT分析的深海采矿发展策略研究[J]. 中国矿业,2021,30(7):8. doi: 10.12075/j.issn.1004-4051.2021.07.028
[72] ALEYNIK D,INALL M E,DALE A,et al. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific[J]. Scientific Reports,2017,7(1):1-14. doi: 10.1038/s41598-016-0028-x
[73] NARITA T, OSHIKA J, OKAMOTO N, et al. Summary of environmental impact assessment for mining seafloor massive sulfides in Japan[J]. Journal of Shipping and Ocean Engineering, 2015, 5: 103-114.
[74] SUZUKI K, YOSHIDA K. Mining in hydrothermal vent Fields: predicting and minimizing impacts on ecosystems with the use of a mathematical modeling framework[M]. Environmental Issues of Deep-Sea Mining, 2019: 231-253.
[75] CLARK M R,DURDEN J M,CHRISTIANSEN S. Environmental Impact Assessments for deep-sea mining:can we improve their future effectiveness?[J]. Marine Policy,2020,114:1-9.
[76] LE J T,LEVIN L A,CARSON R T. Incorporating ecosystem services into environmental management of deep-seabed mining[J]. Oceanography,2017,137:486-503.
[77] GROFFMAN P M,BARON J S,BLETT T,et al. Ecological thresholds:the key to successful environmental management or an important concept with no practical application?[J]. Ecosystems,2006,9(1):1-13. doi: 10.1007/s10021-003-0142-z