厄瓜多尔 Oriente 盆地白垩系Napo组LU亚段沉积模式

韩立杨, 孙雨, 张克鑫, 闫百泉, 张超前, 杨国庆. 厄瓜多尔 Oriente 盆地白垩系Napo组LU亚段沉积模式[J]. 海洋地质前沿, 2024, 40(5): 80-90. doi: 10.16028/j.1009-2722.2023.030
引用本文: 韩立杨, 孙雨, 张克鑫, 闫百泉, 张超前, 杨国庆. 厄瓜多尔 Oriente 盆地白垩系Napo组LU亚段沉积模式[J]. 海洋地质前沿, 2024, 40(5): 80-90. doi: 10.16028/j.1009-2722.2023.030
HAN Liyang, SUN Yu, ZHANG Kexin, YAN Baiquan, ZHANG Chaoqian, YANG Guoqing. The sedimentary model of the LU Sub-member of Cretaceous Napo Formation in Oriente Basin, Ecuador[J]. Marine Geology Frontiers, 2024, 40(5): 80-90. doi: 10.16028/j.1009-2722.2023.030
Citation: HAN Liyang, SUN Yu, ZHANG Kexin, YAN Baiquan, ZHANG Chaoqian, YANG Guoqing. The sedimentary model of the LU Sub-member of Cretaceous Napo Formation in Oriente Basin, Ecuador[J]. Marine Geology Frontiers, 2024, 40(5): 80-90. doi: 10.16028/j.1009-2722.2023.030

厄瓜多尔 Oriente 盆地白垩系Napo组LU亚段沉积模式

  • 基金项目: 海南省科技计划三亚崖州湾科技城自然科学基金联合项目(2021JJLH0077);国家自然科学基金(41772149, 41872158)
详细信息
    作者简介: 韩立杨(1997—),男,在读硕士,主要从事沉积与储层地质学方面的研究工作. E-mail:hly_squid@163.com
    通讯作者: 闫百泉(1971—),男,博士,教授,主要从事油气储层沉积学与油气田开发地质学方面的研究工作. E-mail:ybqhht@163.com
  • 中图分类号: P736;P618.13

The sedimentary model of the LU Sub-member of Cretaceous Napo Formation in Oriente Basin, Ecuador

More Information
  • 厄瓜多尔 Oriente 盆地北部白垩系Napo组LU亚段地层油气资源极其丰富,具有较大的油气勘探潜力,由于目前对LU亚段地层沉积模式认识不清晰,极大程度上限制了研究区进一步勘探开发。依据LU亚段岩芯观察、测井、成熟度分析以及镜下薄片等资料,通过岩芯岩性、结构等岩石学特征,沉积构造、生物遗迹化石、沉积韵律等沉积学特征,以及测井相标志认为,研究区LU亚段地层发育于潮汐作用为主的海陆过渡环境,并在前人研究基础上提出潮控河口湾与陆棚之间存在过渡带沉积,形成了潮控河口湾-过渡带-陆棚沉积体系,识别出潮汐水道、潮汐砂坝、砂坪、海绿石砂席、混合坪、陆棚泥和灰质滩共7种沉积微相,其中,优势储层相带为潮汐水道和潮汐砂坝,砂坪次之。建立研究区潮控河口湾-过渡带-陆棚沉积模式,以期对Oriente盆地白垩系Napo组油气勘探提供有利的科学依据。

  • 加载中
  • 图 1  Oriente盆地研究区位置及层序地层柱状图

    Figure 1. 

    图 2  FOLK[18](1968)砂岩三角分类图

    Figure 2. 

    图 3  FB-173井Napo组LU亚段镜下特征

    Figure 3. 

    图 4  Napo组LU亚段碎屑岩粒度概率累积曲线特征

    Figure 4. 

    图 5  Oriente盆地Napo组LU亚段沉积构造岩芯照片

    Figure 5. 

    图 6  Oriente 盆地北部区块LU亚段地层主要沉积微相模版

    Figure 6. 

    图 7  Oriente 盆地北部FB-173井Napo组LU亚段柱状图

    Figure 7. 

    图 8  Oriente 盆地Mariann油田LU亚段切物源方向连井沉积微相剖面图

    Figure 8. 

    图 9  Mariann油田白垩系Napo组LU亚段沉积微相

    Figure 9. 

    图 10  英国Cobequid 湾-Salmon 河(CB-SR)河口[4]

    Figure 10. 

    图 11  Oriente盆地Napo组LU亚段潮控河口湾-过渡带-陆棚沉积模式

    Figure 11. 

    表 1  Oriente盆地Napo组LU亚段岩相类型及成因解释

    Table 1.  Genetic interpretation in lithofacies types of the LU Sub-member of the Napo Formation in the Oriente Basin

    岩相类型 沉积构造 生物特征 成因解释
    大型交错层理中—粗砂岩(图5a—d) 以大型(板状、槽状、羽状)交错层理和泥披层为主,其中,羽状交错层理和泥披层是典型潮汐标志,碳质泥披层表现为韵律发育特征,指示具有一定陆源沉积注入 生物扰动指数0~1 由高能单向潮汐流和次要的河流逆流
    产生
    含泥披层交错层理中—细砂岩(图5e) 高角度板状交错层理和泥披层较为常见 生物扰动指数0~1 砂质纹层为涨退潮期牵引流导致的沙丘迁移所形成,而泥披层则是在停潮期由水体中悬浮物缓慢沉降产生
    脉状层理中—细砂岩(图5f) 脉状层理发育 生物扰动指数1~2 水动力条件强弱交替下形成
    平行层理中—细砂岩(图5g) 以平行层理为主,泥披层不甚发育,通常与等岩相互层 生物扰动指数<1 高流态砂质沉积物迁移形成
    波状层理砂泥岩互层(图5h) 发育波状层理,含有菱铁矿泥质层及黄铁矿结核,可见收缩裂缝 生物扰动指数1~2,发育Planolites、Lockeia、Thalassoides遗迹相 过渡带环境沉积介质的波浪振荡造成
    块状泥质细—粉砂岩(图5i) 块状构造及波状交错层理,可见部分砂质纹层受生物破坏进入泥质纹层形成收缩裂缝等软沉积变形构造 生物扰动指数2~5,发育Planolites、Chondrites等多种遗迹相 形成于正常浪基面之下、物源供给不足的陆棚环境
    波纹层理细砂岩
    图5j)
    为波纹层理,含有泥质薄层 生物扰动指数<1,可见Planolites、Thalassoides遗迹相 事件沉积
    块状海绿石细砂岩
    图5k)
    块状构造及正向递变层理,具有底部冲
    刷面
    生物扰动指数为3,含瓣鳃类钙质介壳、Planolites遗迹相 风暴浪基面与正常浪基面之间的弱氧化过渡带环境中
    生物碎屑泥质细砂岩(图5l) 生物扰动指数<1,生物碎屑主要为破碎的软体动物瓣膜,可见Planolites、Thalassoides遗迹相 陆棚环境
    块状含粉砂泥岩/页岩(图5m) 水平层理为主 可见钙质生物介壳,如瓣鳃类 悬浮状态的泥质颗粒缓慢沉积形成
    块状泥质石灰岩
    图5n)
    生物扰动指数为2,含有丰富的化石遗迹,生物碎屑、软体动物瓣膜、植物碎屑、棘皮动物、有孔虫等 正常盐度的开阔海洋陆棚环境
    下载: 导出CSV
  • [1]

    TANG M M,ZHANG K X,HUANG J X,et al. Facies and the architecture of estuarine tidal bar in the Lower Cretaceous McMurray Formation,Central Athabasca Oil Sands,Alberta,Canada[J]. Energies,2019,12(9):1-18. doi: 10.3390/en12091769

    [2]

    DALRYMPLE R W,ZAITLIN B A,BOYD R. Estuarine facies models; conceptual basis and stratigraphic implications[J]. Journal of Sedimentary Research,1992,62(6):1130-1146. doi: 10.1306/D4267A69-2B26-11D7-8648000102C1865D

    [3]

    PRITCHARD D W. What is an estuary:physical viewpoint[J]. Lauff G H,Estuaries:American Association for the Advancement of Sciences,1967,83:3-5.

    [4]

    DAVIS R A,DALRYMPLE R W. Principles of Tidal Sedimentology[M]. New York: Springer,2012:79-107.

    [5]

    赵霞飞,胡东风,张闻林,等. 四川盆地元坝地区上三叠统须家河组的潮控河口湾与潮控三角洲沉积[J]. 地质学报,2013,87(11):1748-1762.

    [6]

    刘慧盈,陈和平,张克鑫,等. 厄瓜多尔Oriente盆地北部区块T段地层沉积演化特征[J]. 中国海上油气,2017,29(2):53-62.

    [7]

    SU J F,FAN D D,LIU P J,et al. Anatomy of the transgressive depositional system in a sediment-rich tide-dominated estuary:the paleo-Yangtze estuary,China[J]. Marine and Petroleum Geology,2020,121:104588. doi: 10.1016/j.marpetgeo.2020.104588

    [8]

    李阳,金振奎,朱小二,等. 潮控河口湾岩相类型及沉积模式:以厄瓜多尔Oriente盆地北部区块上白垩统Napo组LU段为例[J]. 沉积学报,2020,38(4):826-837.

    [9]

    SHANMUGAM G,POFFENBERGER M,ÁLAVA J T. Tide-dominated estuarine facies in the Hollin and Napo (“T” and “U”) Formations (Cretaceous),Sacha Field,Oriente Basin,Ecuador[J]. AAPG Bulletin,2000,84(5):652-681.

    [10]

    TANKARD A J, SUÁREZ SORUCO R,WELSINK H J.Petroleum Basins of South America[M]//WHITE H J,SKOPEC R A,RAMIREZ F A,et al. Reservoir characterization of the Hollin and Napo Formations,Western Oriente Basin,Ecuador. American Association of Petroleum Geologists,1995:573-596.

    [11]

    刘忠亮,张成富,张渊,等. Oriente盆地L-I-Y油田Hollin组与Napo组沉积微相研究[J]. 石油物探,2017,56(4):581-588.

    [12]

    阳孝法,谢寅符,张志伟,等. 奥连特盆地白垩系海绿石成因类型及沉积地质意义[J]. 地球科学,2016,41(10):1696-1708.

    [13]

    李晨晖,薛海涛,卢双舫,等. 潮控河口湾环境下的沉积相特征研究:以D-F油田M1油藏为例[J]. 西安石油大学学报(自然科学版),2017,32(2):20-28.

    [14]

    DASHWOOD M F,ABBOTTS I L. Aspects of the petroleum geology of the Oriente Basin,Ecuador[J]. Geological Society,London,Special Publications,1990,50:89-117. doi: 10.1144/GSL.SP.1990.050.01.06

    [15]

    VALLEJO C,TAPIA D,GAIBOR J,et al. Geology of the Campanian M1 sandstone oil reservoir of eastern Ecuador:a delta system sourced from the Amazon Craton[J]. Marine and Petroleum Geology,2017,86:1207-1223. doi: 10.1016/j.marpetgeo.2017.07.022

    [16]

    刘畅,张琴,谢寅符,等. 厄瓜多尔Oriente盆地东北部区块白垩系层序地层格架及发育模式[J]. 沉积学报,2014,32(6):1123-1131.

    [17]

    杨金秀,张克鑫,陈和平,等. Oriente盆地D-F油田泥岩墙成因及其对油藏分布的影响[J]. 石油与天然气地质,2017,38(6):1156-1164.

    [18]

    FOLK R L. Petrology of Sedimentary Rocks[M]. Austin Texas:Hemphill’s,1968.

    [19]

    JOHNSON M S,DASHTGARD E S. Inclined heterolithic stratification in a mixed tidal-fluvial channel:differentiating tidal versus fluvial controls on sedimentation[J]. Sedimentary Geology,2014,301:41-53.

    [20]

    ICHASO A A,DALRYMPLE R W,et al. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic),offshore Norway[J]. Geology,2009,37(6):539-542. doi: 10.1130/G25481A.1

    [21]

    LONGHITANO S G,MELLERE D,STEEL R J,et al. Tidal depositional systems in the rock record:a review and new insights[J]. Sedimentary Geology,2012,279:2-22. doi: 10.1016/j.sedgeo.2012.03.024

    [22]

    BOYD R,DALRYMPLE R W,ZAITLIN B A. Estuarine and incised-valley facies models[J]. Facies Models Revisited,2006,84:171-234.

    [23]

    梅冥相,杨锋杰,高金汉,等. 中元古代晚期浅海高能沉积环境中的海绿石:以天津蓟县剖面铁岭组为例[J]. 地学前缘,2008,15(4):146-158.

    [24]

    许璐,杨长清,王海荣. 东海陆架南部海域及周边陆域白垩纪海侵标志及地质意义[J]. 海洋地质前沿,2017,33(4):22-30.

    [25]

    SANTANU B,TATHAGATA R C,PRATUL K S,et al. The formation of authigenic deposits during Paleogene warm climatic intervals:a review[J]. Journal of Palaeogeography,2020,9(4):4-30.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  193
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2023-02-18
刊出日期:  2024-05-28

目录