Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin
-
摘要:
目前可用于封存二氧化碳的地质体包含深部咸水层、枯竭油气田、玄武岩等,其中,深部咸水层广泛分布于全球大多数沉积盆地,具有封存能力大、技术成熟、安全性高、成本低等优点,是一种重要的二氧化碳封存地质体。相较于陆域,海域碳封存具有封存潜力大、安全性高、环境影响小、封存周期长等优点,是实现“双碳”目标的重要途径。东海陆架盆地面积大,盆地构造稳定性较高,属于次冷-次热盆地,碳封存目标层厚度大、分布广,具有良好的咸水层二氧化碳封存地质条件,且盆地油气勘探开发程度较高,实施二氧化碳咸水层地质封存的工程条件成熟。在中国海域含油气盆地中,东海陆架盆地咸水层二氧化碳地质封存适宜性为高适宜。综合考虑勘探开发程度、区域构造稳定性、地热条件、二氧化碳咸水层地质封存物质条件和地质封存工程实施条件等可影响二氧化碳地质封存前景评价的参数,分别评价了各区带二氧化碳封存前景。其中,台北坳陷和浙东坳陷碳封存前景最好,适宜实施二氧化碳地质封存;长江坳陷和海礁隆起碳封存前景较好,可作为实施二氧化碳地质封存的备选区带。
Abstract:At present, geological bodies that can be used to store carbon dioxide include deep saline water layer, depleted oil and gas fields, basalts, etc. The deep saline water layer is widely distributed in most sedimentary basins in the world, has the advantages of large storage capacity, mature technology, high security, and low cost, and is an important carbon dioxide storage geological body. Compared with land areas, a carbon storage in sea areas has the advantages of large storage potential, high safety, small environmental impact, and long storage period, and is an important way to achieve the goal of "carbon peaking and carbon neutrality". The East China Sea Shelf Basin has a large area and high structural stability. It is a sub-cold–sub-hot basin. The carbon storage target layer is thick and widely distributed, and has good geological conditions for carbon dioxide storage in saline water layer. Furthermore, the engineering conditions for geological storage of carbon dioxide in saline water layers are mature. Among the oil and gas basins in China’s maritime area, the suitability for geological storage of carbon dioxide in saline water layers in the East China Sea Shelf Basin is great. After comprehensively considering the parameters that affect the evaluation of carbon dioxide geological storage prospects, such as the degree of exploration and development, regional structural stability, geothermal conditions, geological storage material conditions in saline carbon dioxide layers, and geological storage engineering implementation conditions, the prospects for carbon dioxide storage in each zones were evaluated. Results show that the prospects for carbon dioxide storage are the best in Taipei Depression and Zhedong Depression, and they are suitable for geological storage of carbon dioxide, followed by the Changjiang Depression and Haijiao Uplift that and can be used as candidates for carbon dioxide geological storage.
-
[1] 高学杰,赵宗慈,丁一汇,等. 温室效应引起的中国区域气候变化的数值模拟I:模式对中国气候模拟能力的检验[J]. 气象学报,2003,6(1):20-28. doi: 10.3321/j.issn:0577-6619.2003.01.003
[2] 高学杰,赵宗慈,丁一汇,等. 温室效应引起的中国区域气候变化的数值模拟II:中国区域气候的可能变化[J]. 气象学报,2003,61(1):29-37. doi: 10.3321/j.issn:0577-6619.2003.01.004
[3] IPCC. Climate change 2014: mitigation of climate change[R]. London: Cambridge University Press, 2014.
[4] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 2021.
[5] 孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,499(11):10-20. doi: 10.13199/j.cnki.cst.2021.11.002
[6] 陈建文,梁杰,张银国,等. 中国海域油气资源潜力分析与黄东海海域油气资源调查进展[J]. 海洋地质与第四纪地质,2019,39(6):1-29. doi: 10.16562/j.cnki.0256-1492.2019112001
[7] 霍传林,李官保,潘建明,等. 我国开展CO2海底封存的利弊分析和对策建议[J]. 海洋环境科学,2014,33(1):138-143.
[8] 张振冬,杨正先,张永华,等. CO2捕集与封存研究进展及其在我国的发展前景[J]. 海洋环境科学,2012,31(3):456-459. doi: 10.3969/j.issn.1007-6336.2012.03.032
[9] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连: 大连海事大学, 2014.
[10] RUBIN S E. Special Report on Carbon Dioxide Capture and Storage[M]. Washington D.C.: U. S. Climate Change Science Program Workshop, 2005.
[11] 李义曼,庞忠和,李捷,等. 二氧化碳咸水层封存和利用[J]. 科技导报,2012,30(19):70-79. doi: 10.3981/j.issn.1000-7857.2012.19.011
[12] 刁玉杰,朱国维,金晓琳,等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报,2017,36(6):1088-1095. doi: 10.3969/j.issn.1671-2552.2017.06.021
[13] 张晓普,于开宁,李文. 鄂尔多斯地区深部咸水层二氧化碳地质储存适宜性评价[J]. 地质灾害与环境保护,2012,23(1):73-77. doi: 10.3969/j.issn.1006-4362.2012.01.015
[14] 徐威,苏小四,杜尚海,等. 松辽盆地中央坳陷区深部咸水层二氧化碳储存潜力评价及其不确定性分析[J]. 第四纪研究,2011,31(3):483-490. doi: 10.3969/j.issn.1001-7410.2011.03.11
[15] 师庆三. 碳中和约束下新疆塔里木、准噶尔、吐哈盆地CO2理论储存潜力评估[J]. 环境与可持续发展,2021,46(5):99-105.
[16] LI S Z, SUO Y H, LI X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews. 2019, 192: 91-137.
[17] YANG C Q, HAN B F, YANG C S, et al. Mesozoic basin evolution of the East China Sea Shelf and tectonic system transition in Southeast China[J]. Geological Journal. 2018, 55: 239-252.
[18] 李三忠,索艳慧,李玺瑶,等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报,2018,63(16):1550-1593.
[19] 孙晶,杨长清,徐立明,等. 东海陆架南部邻近陆域晚三叠世—早侏罗世沉积古环境分析[J]. 海洋地质与第四纪地质,2019,39(6):81-92. doi: 10.16562/j.cnki.0256-1492.2019072501
[20] 可行, 陈建文, 龚建明, 等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析 [J]. 海洋地质与第四纪地质, 2023, 43(2): 55-65.
[21] 可行, 陈建文, 龚建明, 等. 东海陆架盆地CO2 地质封存适宜性评价[J]. 海洋地质前沿, 2023, 39(7): 1-12.
[22] 田杨. 东海陆架盆地丽水凹陷油气成藏规律研究[D]. 武汉: 中国地质大学(武汉), 2013.
[23] 王锋. 东海陆架盆地长江坳陷新生代构造变形及演化[D]. 南京: 南京大学, 2005.