Oil and gas accumulation characteristics of Structure G in the igneous rock area south of Xihu Sag, East China Sea Basin
-
摘要:
G构造是一个大型挤压反转背斜,位于西湖凹陷西南角的天台斜坡带火成岩发育区。由于目前对该区火山活动规律及后期油气保存等成藏演化条件认识不清,严重限制了天台斜坡带的油气勘探进程。通过对研究区地震资料进行解释,研究了G构造区火成岩的岩石学、年代学和时空分布特征,重建了火山活动、圈闭形成与油气成藏过程的关系。结果表明,G构造范围内发育的火成岩为中新世中期的浅层侵入岩、溢流相喷出岩和通道相火成岩,该火成岩的发育使得平湖组和花港组的地层碎裂化,由于该背斜核部存在早期火山通道,后期挤压形成的圈闭有效性差。龙井运动(中新世末期,5.3 Ma)至上新世三潭组沉积期,该背斜转折端发育了一系列近EW向次级断层,进一步破坏了圈闭的完整性。由于背斜翼部未受火成岩影响,该处的构造-岩性圈闭应该是下一步勘探的重要方向。
Abstract:Structure G is a large compressional inversion anticline located in the igneous rock development area of the Tiantai Slope Zone in the southwest corner of the Xihu Sag. Due to the lack of understanding of the volcanic activity and later oil-gas preservation and accumulation evolution conditions in this area, the oil-gas exploration process in the Tiantai Slope Zone is severely restricted. Therefore, we interpreted the seismic sounding data in this area, studied the petrology, chronology, and temporal and spatial distribution characteristics of igneous rocks in Structure G, and reconstructed the interrelationship among volcanic activity, trap formation, and hydrocarbon accumulation. Results show that the igneous rocks developed in Structure G are shallow intrusive rocks, effusive extrusive rocks, and channel igneous rocks in the middle Miocene. The development of the igneous rocks fragmented the strata of the Pinghu Formation and Huagang Formation. Due to the existence of early volcanic channels in the core of the Structure G anticline, the traps formed by later extrusion are less effective. From the Longjing Movement (late Miocene, 5.3 Ma) to the depositional period of the Santan Formation (Pliocene), a series of nearly EW-trending secondary faults developed at the turning end of the anticline, further destroying the integrity of the trap. We believe that since the anticline wing is not affected by igneous rocks, the structural-lithological traps there should be an important direction for further exploration.
-
Key words:
- Longjing Movement /
- inversion anticline /
- magmatic activity /
- Xihu Sag /
- East China Sea Basin
-
-
表 1 B井原油物性统计
Table 1. Statistics of physical properties of crude oil from Well B
井号 层位 井段/m 流体性质 密度/ (g/cm3) 含蜡量/% 含硫/% 胶质/% 沥青质/% 凝固点/℃ B井 花上段 3 013.5~3 017 原油 0.827 3.98 0.02 3.79 / 11 B井 平上段 4 057 凝析油(凝析气到地表反凝析出的原油) 0.803 3.72 0.02 2.64 / 11 表 2 B井原油金刚烷指数计算相对Ro成熟度
Table 2. Calculation of relative Ro maturity of crude oil adamantane index from Well B
井号 层位 井段/m 流体性质 IMA IMD 4-MD/3-MD 4,9-DMD/3,4-DMD 计算Ro B井 花上段 3 013.5~3 017 原油 67.2 42 1.8 0.6 1.37 B井 平上段 4 057 凝析油(凝析气到地表反凝析出的原油) 66.2 48 107 0.58 1.5 注:IMA(甲基金刚烷指数)=1-甲基金刚烷/(1-甲基金刚烷+2-甲基金刚烷);IMD(甲基双金刚烷指数)=4-甲基双金刚烷/(1-甲基双金刚烷+3-甲基双金刚烷+4-甲基双金刚烷);4-MD/3-MD=4-甲基双金刚烷/3-甲基双金刚烷 ;4,9-DMD/3,4-DMD=4,9-二甲基双金刚烷/3,4-二甲基双金刚烷。 -
[1] 蒋一鸣,邹玮,刘金水,等. 东海西湖凹陷中新世末反转背斜构造成因机制:来自基底结构差异的新认识[J]. 地球科学,2020,45(3):968-979.
[2] 刘金水,邹玮,李宁,等. “储保耦合”控藏机制与西湖凹陷大中型油气田勘探实践[J]. 中国海上油气,2019,31(3):11-19.
[3] 周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气,2020,32(1):1-12.
[4] 邹玮,余一欣,刘金水,等. 东海盆地西湖凹陷中央反转构造带发育主控因素及宁波背斜形成过程[J]. 石油学报,2021,42(2):176-185.
[5] 刘金水,许怀智,蒋一鸣,等. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报,2020,94(3):675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001
[6] CUKUR D,HOROZAL S,LEE G,et al. Timing of trap formation and petroleum generation in the northern East China Sea Shelf Basin[J]. Marine and Petroleum Geology,2012,36(1):154-163. doi: 10.1016/j.marpetgeo.2012.04.009
[7] LI C F,ZHOU Z Y,GE H P,et al. Rifting process of the Xihu Depression,East China Sea Basin[J]. Tectonophysics,2009,472(1/4):135-147. doi: 10.1016/j.tecto.2008.04.026
[8] ZHU W L,ZHONG K,FU X W,et al. The formation and evolution of the East China Sea Shelf Basin:a new view[J]. Earth-Science Reviews,2019,190:89-111. doi: 10.1016/j.earscirev.2018.12.009
[9] SU A,CHEN H H,LEI M Z,et al. Paleo-pressure evolution and its origin in the Pinghu slope belt of the Xihu Depression,East China Sea Basin[J]. Marine and Petroleum Geology,2019,107:198-213. doi: 10.1016/j.marpetgeo.2019.05.017
[10] 周心怀,蒋一鸣,唐贤君. 西湖凹陷成盆背景、原型盆地演化及勘探启示[J]. 中国海上油气,2019,31(3):1-10.
[11] 傅宁,李友川,陈桂华,等. 东海平湖油气田油藏地球化学研究[J]. 中国海上油气(地质),2003,17(4):240-244.
[12] 陈敬轶,王飞宇,刘晓. 东海平湖油气田烃源岩特征与油气生成[J]. 地质科技情报,2010,29(6):80-83.
[13] 刘金水,赵洪. 东海陆架盆地西湖凹陷平湖斜坡带异性气侵的成藏模式[J]. 成都理工大学学报(自然科学版),2019,46(4):487-496.
[14] 朱扬明,周洁,顾圣啸,等. 西湖凹陷始新统平湖组煤系烃源岩分子特征[J]. 石油学报,2012,33(1):32-39. doi: 10.7623/syxb201201004
[15] 贾健谊,须雪豪,孙伯强. 东海西湖凹陷原油与天然气的地球化学特征[J]. 海洋石油,2000,20(2):1-7.
[16] 曹倩,宋在超,周小进,等. 东海盆地西湖凹陷原油地化特征及来源分析[J]. 石油实验地质,2019,41(2):251-259.
[17] 覃军,蒋一鸣,李宁,等. 东海陆架盆地西湖凹陷Y构造油气成藏过程及勘探启示[J]. 海洋地质与第四纪地质,2019,39(6):159-168.
[18] 张彦振,刘金水,覃军,等. 西湖凹陷中央洼陷带中部花港组岩性油气藏主控因素及形成模式[J]. 中国海上油气,2021,33(2):36-46.
[19] 赵洪,蒋一鸣,常吟善,等. 西湖凹陷平湖组基于沉积相标志的沉积特征研究[J]. 上海国土资源,2018,39(1):88-92.
[20] 杨长清,杨传胜,李刚,等. 东海陆架盆地南部中生代构造演化与原型盆地性质[J]. 海洋地质与第四纪地质,2012,32(3):105-111.
[21] 杨传胜,李刚,杨长清,等. 东海陆架盆地及其邻域岩浆岩时空分布特征[J]. 海洋地质与第四纪地质,2012,32(3):125-133.
[22] 孟祥君,张训华,刘展,等. 东海西湖凹陷北部基底构造特征[J]. 海洋地质与第四纪地质,2008,28(2):61-64.
[23] 高伟中,杨彩虹,赵洪. 东海盆地西湖凹陷热事件对储层的改造及其机理探讨[J]. 石油实验地质,2015,37(5):548-554.
[24] 周静毅,段文豪,刘明阳,等. 西湖凹陷天台西地区火成岩的识别及其在勘探中的应用[J]. 海洋石油,2017,37(4):35-44. doi: 10.3969/j.issn.1008-2336.2017.04.035
[25] 王伟,张丽艳,李响. 平湖油气田油气成藏新模式[J]. 海相油气地质,2011,16(1):51-55.
[26] 陈桂华,李友川,付宁,等. 平湖地区油气分布主控因素分析[J]. 中国海上油气(地质),2003,17(3):164-167.
[27] 傅宁,李友川,刘东,等. 东海平湖气田天然气运移地球化学特征[J]. 石油勘探与开发,2005,32(5):34-37.
[28] 张迎朝,胡森清,刘金水,等. 东海盆地X凹陷天然气成藏条件与成藏模式[J]. 中国海上油气,2022,34(1):27-35.
[29] 李天军,黄志龙,郭小波,等. 东海盆地西湖凹陷平北斜坡带平湖组煤系原油地球化学特征与油-源精细对比[J]. 石油与天然气地质,2022,43(2):432-444. doi: 10.11743/ogg20220215
[30] YANG F L,XU X,ZHAO W F,et al. Petroleum accumulations and inversion structures in the Xihu Depression,East China Sea Basin[J]. Journal of Petroleum Geology,2011,34(4):429-440. doi: 10.1111/j.1747-5457.2011.00513.x
-