Influence of foundation pit dewatering on sonar seepage detection accuracy
-
摘要: 随着声纳渗流检测技术在水文地质勘探中的应用,其测量结果精度的高低对获取的水文地质参数的准确性起着至关重要的作用。文章依托南宁某基坑工程,采用现场试验方法,同时考虑天然流场和人工流场,分三个阶段对基坑止水帷幕进行声纳渗流检测,对比不同阶段渗漏缺陷暴露的情况,同时根据渗透流速量级变化判断其检测结果精度的高低,并在实际工程中验证其准确性。研究结果表明:不同降水阶段的渗透流速大小变化显著,基坑地下水位降深每增加10 m,声纳检测到的渗透流速平均提高1~2个量级。其原因为降水导致基坑内外水头差增大,水力坡度的增加使渗漏缺陷附近的渗流场发生变化,高水头作用下渗透流速变化明显,渗漏缺陷定位更加精准,声纳检测精度也越高。可见,抬高基坑内外水头差对墙体渗漏缺陷的精准定位十分必要。因此,在对基坑止水帷幕采取声纳渗流检测时,建议将地下水位降至基坑底板以下,以提高检测结果的精度,有效探测止水帷幕渗漏风险。Abstract: With the application of sonar seepage detection technology in hydrogeological exploration, the accuracy of the measurement results plays an important role in obtaining accurate hydrologic parameters. Based on a foundation pit project in Nanning of Guangxi, this paper adopts the method of field test and considers the combination of natural flow field and artificial flow field. Sonar seepage detection was carried out on the foundation pit waterproof curtain in three stages, and the exposure of leakage defects at different stages is compared. The accuracy of the measured results is judged according to the change of the magnitude of osmotic velocity. The correctness is verified in the actual engineering progress. The research results show that the permeability velocity varied significantly in different precipitation stages, and with each 10 m increase in the depth of foundation pit water level, the seepage velocity detected by sonar seepage increases by an average of 1 to 2 orders of magnitude. The reason is that the difference between the water head inside and outside the foundation pit is increased due to precipitation, and the increase of hydraulic gradient makes the seepage field near the leakage defect change. Under the action of high water head, the seepage velocity changes obviously, so the location of the leakage defect is more accurate, and the accuracy of sonar detection is also higher. Therefore, it is very necessary to raise the head difference between the inside and outside of the foundation pit to accurately locate the wall leakage defects. When the sonar seepage detection is adopted, it is recommended to lower the groundwater level below the foundation pit floor, so as to effectively detect the risk of seepage of waterproof curtain.
-
-
[1] 周志芳, 庄超, 戴云峰, 等. 单孔振荡式微水试验确定裂隙岩体各向异性渗透参数[J]. 岩石力学与工程学报, 2015, 34(2):271-278.[ZHOU Z F, ZHUANG C, DAI Y F, et al. Determining anisotropic hydraulic conductivity in fractured rocks based on single-borehole slug tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):271-278.(in Chinese)]
[2] 徐亚, 胡立堂, 刘玉强, 等. 双层抽水试验中观测井井筒效应的数值模拟研究[J]. 水文地质工程地质, 2015, 42(6):36-42.[XU Y, HU L T, LIU Y Q, et al. Numerical simulation study on wellbore effects of observation well in pumping test of double-aquifer[J]. Hydrogeology & Engineering Geology, 2015, 42(6):36-42.(in Chinese)]
[3] 王新峰,梁杏,孙蓉琳, 等. 一种层状岩体压水试验成果计算分析渗透性的新方法[J]. 水文地质工程地质, 2011, 38(1):46-52.[WANG X F, LIANG X, SUN R L, et al. A new method of hydraulic conductivity calculating and analysis by water pressure test in layered rock[J]. Hydrogeology & Engineering Geology, 2011, 38(1):46-52.(in Chinese)]
[4] 原国红, 马琳. 水文地质参数自动监测处理系统的研制与应用[J]. 岩石力学与工程学报, 2009, 28(4):834-839.[YUAN G H, MA L. Development and application of auto hydrogeological parameters monitoring and data processing system[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):834-839.(in Chinese)]
[5] 张必昌, 胡成, 陈刚, 等. 利用电导率测井与压水试验联合评价岩体渗透性的方法[J]. 水文地质工程地质, 2019, 46(3):62-69.[ZHANG B C, HU C, CHEN G, et al. Method of evaluating the permeability of rock mass by the combination of packer test and flowing fluid electrical conductivity log[J]. Hydrogeology & Engineering Geology, 2019, 46(3):62-69.(in Chinese)]
[6] ROGERS A, MANES C, TSUZAKI T. Measuring the geometry of a developing scour hole in clear-water conditions using underwater sonar scanning[J]. International Journal of Sediment Research, 2020,35(1):105-114.
[7] 赵冬冬, 刘雪松, 周凡, 等. 兼顾远场和近场性能的便携式三维声纳设计[J]. 浙江大学学报(工学版), 2019, 53(2):364-372.[ZHAO D D, LIU X S, ZHOU F, et al. Design of portable three-dimensional sonar for both far-field and near-field[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(2):364-372.(in Chinese)]
[8] 钟世航, 孙宏志, 李术才, 等. 隧道及地下工程施工中岩溶裂隙水及断层、溶洞等隐患的探查、预报[J]. 岩石力学与工程学报, 2012, 31(增刊1):3298-3327.[ZHONG S H, SUN H Z, LI S C, et al. Detection and forecasting for hidden danger of karst fissure water and other geological disasters during construction of tunnels and underground projects[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup1):3298-3327.(in Chinese)]
[9] 杜国平, 杜家佳, 宋晓峰, 等. 三维流速矢量声纳测量系统[J]. 工程地球物理学报, 2019, 16(3):359-367.[DU G P, DU J J, SONG X F, et al.[3D velocity vector sonar measurement system[J]. Chinese Journal of Engineering Geophysics, 2019, 16(3):359-367.(in Chinese)]
[10] 刘迪, 李雪娇, 于艳秋. 声纳渗流检测于桥水库大坝渗漏点的应用研究[J]. 海河水利, 2013(3):46-47.[LIU D, LI X J, YU Y Q. Application research of sonar seepage detection in the seepage point of Yuqiao reservoir dam[J]. Haihe Water Resources, 2013(3):46-47.(in Chinese)]
[11] 高大水, 陈艳, 杜国平. 声纳渗漏检测技术在闸坝检测中的应用[J]. 人民长江, 2016, 47(5):73-75.[GAO D S, CHEN Y, DU G P. Application of sonar leakage detection technology in dam and gate detection[J]. Yangtze River, 2016, 47(5):73-75.(in Chinese)]
[12] 杜家佳, 杜国平, 曹建辉, 等. 高坝大库声纳渗流检测可视化成像研究[J]. 大坝与安全, 2016(2):37-40.[DU J J, DU G P, CAO J H, et al. Study on visualized-imaging of sonar detection for measurement of high dams with large seepage[J]. Dam & Safety, 2016(2):37-40.(in Chinese)]
[13] 白丁. 城市排水管道检测技术的应用及发展[J]. 建材世界, 2019, 40(4):83-86.[BAI D.[Application and development of detection technology for urban drainage pipeline[J]. The World of Building Materials, 2019, 40(4):83-86.(in Chinese)]
[14] 郑伟强, 戴阿福, 杜国平. 三维流速矢量声纳技术在地铁工程中的应用及分析[J]. 山西建筑, 2018, 44(22):68-69.[ZHENG W Q, DAI A F, DU G P. Application and analysis of three-dimensional velocity vector sonar in subway engineering[J]. Shanxi Architecture 2018, 44(22):68-69.(in Chinese)]
[15] 胡盛斌, 杜国平, 徐国元, 等. 基于声纳渗流技术的地铁联络通道涌水探测应用研究[J]. 中国安全生产科学技术, 2019, 15(2):51-56.[HU S B, DU G P, XU G Y, et al. Application research on water inflow detection of metro connecting passage based on sonar seepage technology[J]. Journal of Safety Science and Technology, 2019, 15(2):51-56.(in Chinese)]
[16] 王鹏, 钟有信, 杜广林, 等. 地铁深基坑连续墙渗漏风险的量化控制[J]. 城市轨道交通研究, 2019,22(6):90-93.[WANG P, ZHONG Y X, DU G L, et al. Quantitative control of diaphragm wall leakage risk in metro deep foundation pit[J]. Urban Mass Transit, 2019,22(6):90-93.(in Chinese)]
[17] 杜家佳, 陆剑锋, 王震, 等. 武汉绿地中心深基坑声纳渗流控制技术[J]. 施工技术, 2018, 47(1):6-10.[DU J J, LU J F, WANG Z, et al. Sonar seepage control technology for deep foundation pit of Wuhan greenland center[J]. Construction Technology, 2018, 47(1):6-10.(in Chinese)]
[18] 庞振勇, 崔王洪. 基于渗流场变化的基坑止水帷幕缺陷判别研究与实践[J]. 都市快轨交通, 2016, 29(6):99-105.[PANG Z Y, CUI W H. Research and practice on identifying defects of waterproof curtain for excavation engineering based on changes of seepage field[J]. Urban Rapid Rail Transit, 2016, 29(6):99-105.(in Chinese)]
[19] LORNE B, PERRIER F, AVOUAC J P. Streaming potential measurements:1.Properties of the electrical double layer from crushed rock samples[J]. Journal of Geophysical Research, 1999, 104(B8):17857-17877.
[20] 杨鲲. 海洋调查技术及应用[M]. 武汉:武汉大学出版社, 2009.[YANG K. Technology and application of marine investigation[M]. Wuhan:Wuhan University Press, 2009.(in Chinese)]
-
计量
- 文章访问数: 663
- PDF下载数: 43
- 施引文献: 0