含单裂隙非饱和带中轻非水相流体修复的数值模拟

赵科锋, 王锦国, 曹慧群. 2020. 含单裂隙非饱和带中轻非水相流体修复的数值模拟. 水文地质工程地质, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019
引用本文: 赵科锋, 王锦国, 曹慧群. 2020. 含单裂隙非饱和带中轻非水相流体修复的数值模拟. 水文地质工程地质, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019
ZHAO Kefeng, WANG Jinguo, CAO Huiqun. 2020. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures. Hydrogeology & Engineering Geology, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019
Citation: ZHAO Kefeng, WANG Jinguo, CAO Huiqun. 2020. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures. Hydrogeology & Engineering Geology, 47(5): 43-55. doi: 10.16030/j.cnki.issn.1000-3665.202001019

含单裂隙非饱和带中轻非水相流体修复的数值模拟

  • 基金项目:

    江苏省自然科学基金项目(BK2012814)

详细信息
    作者简介: 赵科锋(1989-),男,硕士,主要研究方向为地下水环境。E-mail:zhaokefeng_hhu@163.com
  • 中图分类号: P641.2

Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures

  • 针对非饱和带中油类污染物时空分布的研究,室内实验很难定量分析运移机理,野外检测成本高且破坏地层。数值模拟法作为一种应用广且成熟的方法,可以用来分析油类污染物在非饱和带中的运移规律。为了研究单井抽提及原位冲洗修复时,含单裂隙非饱和带中轻非水相流体(Light non-aqueous phase liquids,LNAPL)的时空变化规律,建立了数值模型,分析不同条件下LNAPL的修复效果及时空变化规律。模拟结果发现,LNAPL注入时优先流入裂隙,停止注入时优先流出裂隙。单井抽提修复模拟表明,抽提流量越大,修复效率越高。原位冲洗技术能有效补充地下水,防止产生新的环境问题;注水井起到“冲洗”及稀释污染物的作用,模拟最优方案修复面积达到96%,修复率达到75%,LNAPL饱和度控制在约0.05;对比分析发现,注水井布设在污染物范围的上边界时修复效果最好,能有效“冲洗”污染物并携带至抽提井中抽出地表。该研究为受轻油污染的土壤及地下水修复提供了科学的理论依据及有效的评估方法。
  • 加载中
  • [1]

    胡黎明,武晓峰,刘培斌,等.储油设施渗漏污染过程与修复技术[C]//岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集.北京:中国岩石力学与工程学会,2010:98-105.[HU L M, WU X F, LIU P B, et al. Contamination process and remediation technology due to leakage of petroleum storage facilities[C]//Chinese Society for Rock Mechanics & Engineering. Innovation and Practice of Rock Mechanics and Engineering:Proceedings of the 11th National Conference on Rock Mechanics and Engineering. Beijing:Chinese Society for Rock Mechanics and Engineering, 2010:98-105.(in Chinese)]

    [2]

    李晔.LNAPLs在包气带中运移的算法研究及其数值模拟[D].长春:吉林大学,2014.[LI Y. Algorithm of LNAPLs migration and its numerical simulation[D]. Changchun:Jilin University,2014.(in Chinese)]

    [3]

    李永涛. LNAPLs在包气带中运移机理及模拟研究[D].西安:长安大学,2010.[LI Y T. Study on migration mechanism and simulation of light nonaqueous-phase liquids in vadose zone[D]. Xi'an:Chang'an University,2010.(in Chinese)]

    [4]

    王磊,龙涛,张峰,等. 用于土壤及地下水修复的多相抽提技术研究进展[J]. 生态与农村环境学报,2014,30(2):137-145.[WANG L, LONG T, ZHANG F, et al. Advancement in development of multi-phase extraction (MPE) technology for remediation of soil and groundwater[J]. Journal of Ecology and Rural Environment,2014,30(2):137-145.(in Chinese)]

    [5]

    RALENA RACHEVA, NICK TIETGENS, MARTIN KERNER, et al. In situ continuous countercurrent cloud point extraction of microalgae cultures[J]. Separation and Purification Technology,2018,190:268-277.

    [6]

    张祥.有机污染场地原位多相抽提修复研究进展[J].应用化工,2020,49(1):207-211.[ZHANG X. Research progress in the organic contaminated sites remediation by in situ multi-phase extraction technology[J]. Applied Chemical Industry,2020,49(1):207-211.(in Chinese)]

    [7]

    王静,张峰,刘路.多相抽提技术的发展现状与展望[J].广州化工,2019,47(8):14-18.[WANG J, ZHANG F, LIU L. Overview and prospect of multi-phase extraction (MPE) technology[J]. Guangzhou Chemical Industry,2019,47(8):14-18.(in Chinese)]

    [8]

    张云达,顾春杰,何健,等.多相抽提技术在有机复合污染场地治理中的应用[J].上海建设科技,2018(1):71-74.[ZHANG Y D, GU C J, HE J, et al. Application of multiphase extraction technology in the treatment of organic compound polluted sites[J]. Shanghai Construction Technology,2018(1):71-74.(in Chinese)]

    [9]

    王锦淮,顾春杰.多相抽提+原位化学氧化联合技术在有机污染场地的工程应用[J].上海化工,2017,42(12):20-24.[WANG J H, GU C J. Engineering application of multiphase extraction and in-situ chemical oxidation combined technology in organic contaminated sites[J]. Shanghai Chemical Industry,2017,42(12):20-24.(in Chinese)]

    [10]

    桂时乔,马烈,张芝兰,等.石油烃类污染地下水的汽提和原位化学氧化修复[J].环境科技,2013,26(3):48-50.[GUI S Q, MA L, ZHANG L Z, et al. Remediation of TPH contaminated site by air lifting recovery and in situ chemical oxidation[J]. Environmental Science and Technology,2013,26(3):48-50.(in Chinese)]

    [11]

    王晓燕,郑建中,翟建平. SEAR技术修复土壤和地下水中NAPL污染的研究进展[J]. 环境污染治理技术与设备,2006(10):1-5.[WANG X Y, ZHENG J Z, ZHAI J P. Advances in surfactant enhanced aquifer remediation of NAPL-contaminated soil and groundwater systems[J].Techniques and Equipment for Environmental Pollution Control,2006(10):1-5.(in Chinese)]

    [12]

    王磊,龙涛,祝欣,等. 用于土壤及地下水修复的多相抽提技术原理及其有效性评估方法[C]//2013中国环境科学学会学术年会论文集(第五卷).北京:中国环境科学学会,2013:7.[WANG L, LONG T, ZHU X, et al. Principles and effectiveness evaluation method of multiphase extraction technology for soil and groundwater remediation[C]//Proceedings of the 2013 Chinese Academy of Environmental Sciences Annual Conference (Volume 5). Beijing:Chinese Society for Environmental Sciences,2013:7.(in Chinese)]

    [13]

    张晶,张峰,马烈.多相抽提和原位化学氧化联合修复技术应用——某有机复合污染场地地下水修复工程案例[J].环境保护科学,2016,42(3):154-158.[ZHANG J, ZHANG F, MA L. Combined application of multiple remediation technologies by multi-phase extraction and in-situ chemical oxidation-A case study of one groundwater remediation engineering project at an organic compound contaminated site[J].Environmental Protection Science,2016,42(3):154-158.(in Chinese)]

    [14]

    白静.表面活性剂强化地下水循环井技术修复NAPL污染含水层研究[D].长春:吉林大学,2013.[BAI J. Remediation of NAPL contaminated aquifer with surfactant -enhanced groundwater circulation well[D]. Changchun:Jilin University,2013.(in Chinese)]

    [15]

    LEIF NELSON, JAMES BARKER, TOM LI, et al. A field trial to assess the performance of CO2-supersaturated water injection for residual volatile LNAPL recovery[J].Journal of Contaminant Hydrology,2009, 109(1/2/3/4):82-90

    [16]

    JAEHAKJEONG, RANDALL J, CHARBENEAU. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils[J].Journal of Contaminant Hydrology, 2014, 156(1):52-61

    [17]

    FATEMEH EBRAHIMI, ROBERT JAMES LENHARD, MOHAMMAD NAKHAEI, et al. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield[J]. Environmental Science and Pollution Research,2019,26(28):28714-28724.

    [18]

    W WANG, T KUO, Y CHEN, et al. Effect of precipitation on LNAPL recovery performance:An integration of laboratory and field results[J]. Journal of Petroleum Science and Engineering,2014,116:1-7

    [19]

    施小清,张可霓,吴吉春. TOUGH2软件的发展及应用[J]. 工程勘察,2009, 37(10):29-34.[SHI X Q, ZHANG K N, WU J C. The history and application of TOUGH2 code[J]. Geotechnical Investigation & Surveying,2009,37(10):29-34.(in Chinese)]

    [20]

    赵科锋,王锦国.包气带中裂隙对轻非水相流体运移和分布影响的模拟研究[J].水利学报,2016,47(7):891-899.[ZHAO K F, WANG J G. Simulation of fracture impacts on LNAPL migration and distribution in the unsaturated zone[J]. Journal of Hydraulic Engineering,2016,47(7):891-899.(in Chinese)]

    [21]

    黄倩,王锦国,陈舟,等. 黏滞性对LNAPL在非饱和多孔介质中优先流影响的试验研究[J]. 河海大学学报(自然科学版),2015, 43(1):66-71.[HUANG Q, WANG J G, CHEN Z, et al. Experimental study of impacts of viscosity of LNAPL on preferential flow in unsaturated porous media[J]. Journal of Hohai University (Natural Sciences), 2015, 43(1):66-71.(in Chinese)]

    [22]

    赵科锋,王锦国,黄倩,等. 包气带中轻非水相流体运移速率的研究[J]. 工程勘察,2016, 44(3):34-41.[ZHAO K F, WANG J G, HUANG Q, et al. Study on migration rate of LNAPL in vadose zone[J]. Geotechnical Investigation & Surveying,2016, 44(3):34-41.(in Chinese)]

    [23]

    卢斌,邵军荣,张源,等.裂隙地下水中残留LNAPL物理驱替冲洗实验[J].中国环境科学,2020,40(1):182-189.[LU B, SHAO J R, ZHANG Y, et al. Physical displacement and flush of entrapped LNAPL in fractured media groundwater[J]. China Environmental Science,2020,40(1):182-189.(in Chinese)]

    [24]

    卢斌, 吴时强, 谈叶飞, 等.单裂隙中LNAPL残留特点及残留体对水流动动的影响[J].水科学进展, 2015(1):107-113.[LU B, WU S Q, TAN Y F, et al. Characterization of residual LNAPL and effect of LNAPL entrapment configuration on water flow in a single fracture[J].Advances in Water Science, 2015(1):107-113.(in Chinese)]

    [25]

    EBRAHIMI F, LENHARD R J, NAKHAEI M, et al. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield[J]. Environmental Science and Pollution Research International,2019,26(28):28714-28724.

    [26]

    ATTEIA O, PALMIER C, SCHÄFER G. On the influence of groundwater table fluctuations on oil thickness in a well related to an LNAPL contaminated aquifer[J]. Journal of Contaminant Hydrology,2019,223:103476.

    [27]

    ATTEIA O, PALMIER C, SCH FER G. On the influence of groundwater table fluctuations on oil thickness in a well related to an LNAPL contaminated aquifer[J]. Journal of Contaminant Hydrology,2019,223:103476.

    [28]

    SOOKHAK LARI K, DAVIS G B, RAYNER J L, et al. Natural source zone depletion of LNAPL:A critical review supporting modelling approaches[J]. Water Research,2019,157:630-646.

    [29]

    QI S Q, LUO J, O'CONNOR D, et al. A numerical model to optimize LNAPL remediation by multi-phase extraction[J]. Science of the Total Environment,2020,718:137309.

    [30]

    LONGPRé-GIRARD M, MARTEL R, ROBERT T, et al. Surfactant foam selection for enhanced light non-aqueous phase liquids (LNAPL) recovery in contaminated aquifers[J]. Transport in Porous Media,2020,131(1):65-84.

    [31]

    GARCíA-RINCóN JONáS,GATSIOS EVANGELOS,RAYNER JOHN L,et al. Laser-induced fluorescence logging as a high-resolution characterisation tool to assess LNAPL mobility[J]. The Science of the Total Environment,2020,725:138-480.

    [32]

    MOTASEM Y D ALAZAIZA,MOHAD HARRIS RAMLI,NADIM K COPTY,et al. LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method[J]. Bulletin of Engineering Geology and the Environment:The official journal of the IAEG,2020,79(8):1543-1554.

  • 加载中
计量
  • 文章访问数:  879
  • PDF下载数:  89
  • 施引文献:  0
出版历程
收稿日期:  2019-12-13
修回日期:  2020-02-04

目录