传统瞬变电磁法的改进及其在隧道超前地质预报中的应用

伍小刚, 李天斌, 张中, 薛德敏. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质, 2021, 48(1): 163-170. doi: 10.16030/j.cnki.issn.1000-3665.202003025
引用本文: 伍小刚, 李天斌, 张中, 薛德敏. 传统瞬变电磁法的改进及其在隧道超前地质预报中的应用[J]. 水文地质工程地质, 2021, 48(1): 163-170. doi: 10.16030/j.cnki.issn.1000-3665.202003025
WU Xiaogang, LI Tianbin, ZHANG Zhong, XUE Demin. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 163-170. doi: 10.16030/j.cnki.issn.1000-3665.202003025
Citation: WU Xiaogang, LI Tianbin, ZHANG Zhong, XUE Demin. Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 163-170. doi: 10.16030/j.cnki.issn.1000-3665.202003025

传统瞬变电磁法的改进及其在隧道超前地质预报中的应用

详细信息
    作者简介: 伍小刚(1994-),男,硕士研究生,主要从事岩土工程研究。E-mail: 995137242@qq.com
    通讯作者: 李天斌(1964-),男,博士,教授,主要从事地质工程、岩土工程和隧道工程领域的教学和科研工作。E-mail: ltb@cdut.edu.cn
  • 中图分类号: U452.1+1

Improvement of the traditional transient electromagnetic method and its application to advanced geological forecast of tunnel

More Information
  • 为保证施工人员和设备的安全,在隧道开挖过程中需要掌握掌子面前方含水不良地质体的发育情况。较为常用的探测含水不良地质体的物探方法为传统瞬变电磁法。由于以往没有重视探测装置与地质体间的耦合关系,传统瞬变电磁法沿单一测线进行数据采集的方式只能从单一角度发射磁场从而获得单一角度的探测结果,因此一直存在预报不准、漏报等问题。为了克服上述问题,提高预报的准确性,文章对传统瞬变电磁法进行了改进。基于探测装置与地质体间的良-强耦合关系,提出了一种能从水平和竖直方向进行多角度探测的共轴偶极法,通过转动探测装置从多个角度发射磁场,使单一角度无法探测的地质体也能与磁场达到良-强耦合效果,从而降低预报不准、漏报的可能性。共轴偶极法具有多个角度的探测结果,多个结果相互印证,具有比传统方法更高的准确性。在九绵高速公路天池隧道里程为YK223+135—YK223+035段内进行传统方法和共轴偶极法预报,开挖验证表明共轴偶极法对含水节理裂隙和岩溶裂隙等含水不良地质体的预报准确性比传统方法高,可为类似隧道超前地质预报工作提供一定参考。

  • 加载中
  • 图 1  瞬变电磁法原理

    Figure 1. 

    图 2  磁感线与地质体耦合示意图

    Figure 2. 

    图 3  测线布置示意图

    Figure 3. 

    图 4  线圈旋转示意图

    Figure 4. 

    图 5  共轴偶极法角度分布示意图

    Figure 5. 

    图 6  PROTEM CM瞬变电磁仪

    Figure 6. 

    图 7  YK223+135—YK223+035传统方法测试结果

    Figure 7. 

    图 8  YK223+135—YK223+035共轴偶极法测试结果

    Figure 8. 

    表 1  传统方法案例

    Table 1.  Traditional approach cases

    隧道 里程范围 预报情况 实际情况 准确度
    明月峡隧道 YK26+535—YK26+526 岩体较完整,岩溶弱发育 岩体较破碎
    YK26+526—YK26+510 岩体较完整,岩溶弱发育 岩体较破碎,湿润-滴水
    YK26+510—YK26+502 岩体破碎,岩溶裂隙发育 岩体破碎,湿润-滴水,局部为线状流水。 一般
    YK26+502—YK26+490 存在溶洞,可能突泥和裂隙涌水 存在岩溶裂隙,局部存在突泥现象,滴水-局部线状出水 一般
    铜锣山隧道 YK34+482—YK34+277 围岩稳定性较差,地下水呈渗水状 岩体呈松软结构,地下水呈淋水状 一般
    YK34+519—YK34+554 围岩稳定性较差,地下水可能为小股状裂隙水 岩体呈块碎状结构,地下水呈潮湿-滴水状 一般
    YK34+554—YK34+589 围岩稳定性较差,地下水可能为线状 围岩较破碎,地下水呈潮湿-滴水状,局部呈线状 一般
    YK34+589—YK34+624 围岩稳定性较差,存在裂隙水 围岩较破碎,地下水呈潮湿-滴水状,局部呈线状 一般
    YK34+624—YK34+659 围岩稳定性较差,地下水可能为线状 围岩较破碎,地下水呈潮湿-滴水状,局部呈线状 一般
    YK34+659—YK34+694 围岩稳定性较差,存在裂隙水 围岩较破碎,地下水呈潮湿-滴水状 一般
    引汉济渭秦岭隧洞 K10+085—K10+065 围岩裂隙较发育,裂隙水较发育 岩体破碎,渗水 一般
    明月山隧道 YK6+813—YK6+808 存在岩溶裂隙水,滴水,线状出水 裂隙一般发育,局部渗水 一般
    YK6+783—YK6+793 岩体破碎,存在裂隙水,线状出水 裂隙较发育,局部渗水 一般
    YK7+177—YK7+092 存在岩溶裂隙水,小股状涌水 节理裂隙一般发育,渗滴水 一般
    YK7+079—YK7+009 存在岩溶裂隙流水,线状出水 节理裂隙发育,局部渗水 一般
    下载: 导出CSV

    表 2  解译与开挖验证

    Table 2.  Interpretation and excavation verification

    预报里程 解译 开挖验证 准确度
    传统方法 共轴偶极法 传统
    方法
    共轴偶
    极法
    YK223+115—YK223+060 视电阻率为0~5 Ω·m,推测此段内岩体较完整,可能出现小股状流水 图8(a)(b)(c)视电阻率等值线稀疏,不平行。图8(a)视电阻率为0~5 Ω·m,图8(b)为2~5 Ω·m,图8(c)为2~5 Ω·m,推测此段内存在岩溶裂隙,可能出现小股状流水
    YK223+115、YK223+095岩性主要为中等-强风化灰岩,
    局部为砾岩,产状为319°∠65°,岩体较破碎,节理裂隙
    局发育,局部存在岩溶裂隙,存在多处小股状流水,局
    部存在渗、滴水现象
    一般
    YK223+060—YK223+045 图8(a)(b)(c)视电阻率等值线稀疏,不平行。图8(a)视电阻率为5~12 Ω·m,图8(b)为5~10 Ω·m,图8(c)为5~12 Ω·m,推测此段内岩体较破碎,存在渗、滴水现象
    YK223+060、YK223+055岩性主要为中等-强风化灰岩,
    局部为砾岩和砂岩,产状为310°∠71°,岩体较破碎,局
    部节理裂隙局发育,整体存在渗、滴水现象
    一般
    YK223+045—YK223+035 视电阻率等值线稀疏,基本平行,视电阻率为5~10 Ω·m,推测此段内岩体较完整,可能出现渗、滴水现象
    YK223+045、YK223+035岩性主要为中等-强风化灰岩,局部为砾岩和砂岩,产状为313°∠75°,局部破碎,整体存局在渗、滴水现象
    下载: 导出CSV
  • [1]

    吕晓俭, 李宇. 北京市通州区龙旺庄隐伏灰岩水源地勘查与评价研究[J]. 水文地质工程地质,1999,26(2):17 − 21. [LYU Xiaojian, LI Yu. Exploration and evalution of concealed limetone water sources in Longwangzhuang, Tongzhou district, Beijing[J]. Hydrogeology & Engineering Geology,1999,26(2):17 − 21. (in Chinese with English abstract)

    [2]

    武毅, 郭建强, 朱庆俊. 宁南深埋岩溶水勘查的物探新技术[J]. 水文地质工程地质,2001,28(2):45 − 48. [WU Yi, GUO Jianqiang, ZHU Qingjun. Application of new techniques in the exploration of Ningnan deep-seated karst water[J]. Hydrogeology & Engineering Geology,2001,28(2):45 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2001.02.013

    [3]

    薛云峰, 孙晓暾, 孙雅芳. 瞬变电磁电阻率成像法探测岩体渗漏通道的研究及应用[J]. 水文地质工程地质,2004,31(3):96 − 98. [XUE Yunfeng, SUN Xiaotun, SUN Yafang. Transient electromagnetic resistivity imaging formation in detecting rock seepage passage[J]. Hydrogeology & Engineering Geology,2004,31(3):96 − 98. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2004.03.024

    [4]

    时晗. 综合物探方法在厚覆盖层地区勘查地下水源的应用实例[J]. 水文地质工程地质,2005,32(5):101 − 104. [SHI Han. Application of comprehensive geophysical method in exploration of groundwater sources in thick overburden areas[J]. Hydrogeology & Engineering Geology,2005,32(5):101 − 104. (in Chinese) doi: 10.3969/j.issn.1000-3665.2005.05.026

    [5]

    李貅, 武军杰, 曹大明, 等. 一种隧道水体不良地质体超前地质预报方法—瞬变电磁法[J]. 工程勘察,2006,34(3):70 − 75. [LI Xiu, WU Junjie, CAO Daming, et al. Advanced geologic forecasting for unfavorable geological body with tunnel water—transient electromagnetic method[J]. Journal of Geotechnical Investigation & Surveying,2006,34(3):70 − 75. (in Chinese with English abstract)

    [6]

    段铮. 瞬变电磁法在隧道超前地质预报中的应用及解译分析[D]. 成都: 成都理工大学, 2008.

    DUAN Zheng. The application of TEM in tunnel fore geological forecast and its interpretation methods[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)

    [7]

    段铮, 李天斌, 李育枢, 等. 瞬变电磁法超前地质预报技术在铜锣山隧道中的应用[J]. 现代隧道技术,2008,45(2):58 − 62. [DUAN Zheng, LI Tianbin, LI Yushu, et al. Application of TEM for geologic prediction at Tongluoshan tunnel[J]. Modern Tunnelling Technology,2008,45(2):58 − 62. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6582.2008.02.011

    [8]

    段铮, 李天斌. 瞬变电磁法隧道超前地质预报技术的应用[J]. 山西建筑,2009,35(36):326 − 327. [DUAN Zheng, LI Tianbin. The application of transient EM method tunnel advanced geological forecast[J]. Shanxi Architecture,2009,35(36):326 − 327. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2009.36.207

    [9]

    谭代明, 漆泰岳, 刘传利. 隧道全空间瞬变电磁响应的研究与应用[J]. 水文地质工程地质,2009,36(3):111 − 116. [TAN Daiming, QI Taiyue, LIU Chuanli. Research on the transient electromagnetic response in tunnel whole space and its application[J]. Hydrogeology & Engineering Geology,2009,36(3):111 − 116. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.03.024

    [10]

    余东俊. 瞬变电磁法(TEM)在隧道超前预报中的应用和效果研究[D].成都: 成都理工大学, 2010.

    YU Dongjun. The application of transient electromagnetic methods(TEM) in the tunnel advanced forecast and its effect research[D]. Chengdu: Chengdu University of Technology, 2010. (in Chinese with English abstract)

    [11]

    余东俊, 黄磊, 张玮. 瞬变电磁法超前地质预报技术在明月峡隧道中的应用[J]. 勘察科学技术,2010(2):48 − 50. [YU Dongjun, HUANG Lei, ZHANG Wei. Application of transient electromagnetic method in advance geologic prediction technique of Mingyuexia tunnel[J]. Site Investigation Science and Technology,2010(2):48 − 50. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3946.2010.02.012

    [12]

    LI Shucai, LI Shuchen, ZHANG Qingsong, et al. Predicting geological hazards during tunnel construction[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):232 − 242. doi: 10.3724/SP.J.1235.2010.00232

    [13]

    沈晓钧, 王智阳, 余凯, 等. 综合超前预报法在引汉济渭秦岭隧洞中的应用[J]. 人民黄河,2017,39(12):139 − 141. [SHEN Xiaojun, WANG Zhiyang, YU Kai, et al. Application of comprehensive prediction method in tunnel of Qinling in Hanjiang-to-Weihe river valley water diversion project[J]. Yellow River,2017,39(12):139 − 141. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2017.12.032

    [14]

    孟陆波, 李天斌, 段铮, 等. 瞬变电磁法对隧道含水不良地质体的探测规律[J]. 公路,2011,56(5):214 − 218. [MENG Lubo, LI Tianbin, DUAN Zheng, et al. Regularity of transient electromagnetic methods for detecting hydrous unfavorable geological body in tunnel[J]. Highway,2011,56(5):214 − 218. (in Chinese with English abstract)

    [15]

    秦浩靖, 何习平, 相斌辉, 等. 全空间瞬变电磁法在平阳隧道超前预报中的应用研究[J]. 南昌工程学院学报,2019,38(3):46 − 49. [QIN Haojing, HE Xiping, XIANG Binhui, et al. Application research of full-space transient electromagnetic method in advanced geological prediction of Pingyang Tunnel[J]. Journal of Nanchang Institute of Technology,2019,38(3):46 − 49. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4869.2019.03.009

    [16]

    叶展荣. 全空间瞬变电磁法在隧道超前预报预测中的意义[J]. 工程勘察,2018,46(3):75 − 78. [YE Zhanrong. Significance of full space transient electromagnetic method in the prediction of tunnel advanced prediction[J]. Geotechnical Investigation & Surveying,2018,46(3):75 − 78. (in Chinese with English abstract)

    [17]

    邢修举, 蒋齐平. 瞬变电磁法在隧道溃口治理检测中的应用研究[J]. 铁道勘察,2018,44(6):67 − 71. [XING Xiuju, JIANG Qiping. Application of transient electromagnetic method in tunnel collapse control detection[J]. Railway Investigation and Surveying,2018,44(6):67 − 71. (in Chinese with English abstract)

    [18]

    王红英, 崔蓬勃. 瞬变电磁法在隧洞富水性超前探测中的应用[J]. 山西建筑,2018,44(4):149 − 151. [WANG Hongying, CUI Pengbo. Application of transient electromagnetic method in the tunnel advanced watery detection[J]. Shanxi Architecture,2018,44(4):149 − 151. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2018.04.082

    [19]

    舒森, 王树栋, 李广, 等. 瞬变电磁法指导复杂地质隧道超前水平钻探应用[J]. 物探与化探,2018,42(6):1311 − 1316. [SHU Sen, WANG Shudong, LI Guang, et al. The application of TEM to guiding advance exploration drilling of complex geological tunnel[J]. Geophysical and Geochemical Exploration,2018,42(6):1311 − 1316. (in Chinese with English abstract)

    [20]

    邢修举. 岩溶隧道瞬变电磁三维超前探测技术研究[J]. 隧道建设(中英文),2019,39(2):287 − 293. [XING Xiuju. 3D transient electromagnetic advanced detection technology for karst tunnel[J]. Tunnel Construction,2019,39(2):287 − 293. (in Chinese with English abstract)

    [21]

    刘锦东. 瞬变电磁法在隧道裂隙水超前探测中的应用研究[J]. 路基工程,2019(2):99 − 104. [LIU Jindong. Application of transient electromagnetic method in advanced detection of tunnel fissure water[J]. Subgrade Engineering,2019(2):99 − 104. (in Chinese with English abstract)

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1406
  • PDF下载数:  49
  • 施引文献:  0
出版历程
收稿日期:  2020-03-12
修回日期:  2020-05-11
刊出日期:  2021-01-15

目录