Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone
-
摘要:
河岸带作为地表水和地下水的连接枢纽,主要通过反硝化等作用控制着二者之间的氮循环。水利工程会显著改变河流区域水文环境,进而影响河岸带氮素的分布和循环,探明水利工程对河岸带氮循环的影响机制对了解区域氮素的控制及利用具有重要意义。以兴隆水利枢纽为对象,在枢纽上、下游沉积物样品进行了总氮、“三氮”(铵态氮、亚硝态氮、硝态氮)及相关土壤理化性质的分析。结果表明:(1)水利枢纽上游河岸带沉积物氮素含量显著高于下游,上游A剖面总氮、“三氮”平均含量是下游B、C剖面的1.12~3.27倍;(2)水平方向上,3个剖面的河岸带的总氮、“三氮”含量变化具有相似性,即同一剖面上总氮含量在堤内较高,且“三氮”含量均会在堤内靠近堤防的采样点发生突变(剧增或锐减);(3)垂向上总氮、“三氮”分布规律相似,即0~60 cm氮素含量迅速减少,60 cm以下呈不规则变化,总体上氮素含量呈自上而下减少的趋势。兴隆大坝主要影响其上游,通过蓄水抬升了上游河岸带地下水位,沉积物长期处于被淹没状态导致其脱氮能力下降。此外,同一剖面由于堤防导致的微地貌差异,堤内的地下水埋深较堤外的浅,堤内沉积物脱氮能力弱于堤外。
Abstract:A riparian zone, as the junction of surface water and groundwater, mainly controls the nitrogen cycle between surface water and groundwater through denitrification and other actions. Water conservancy projects will significantly change the hydrological environment of river regions, and affect the distribution and circulation of nitrogen in riparian zones. Exploring the influence mechanism of water conservancy projects on the riparian nitrogen cycle is of great practical significance for understanding the control and utilization of regional nitrogen. In this paper, the Xinglong Hydro-Junction is taken as the object, and three riparian zone sampling sections are set up in the upper and lower reaches of the project, with five sampling points in each section. TN, "tri-nitrogen" (refers to
${\rm{NH}}_4^+ $ ${\rm{NO}}_2^- $ ${\rm{NO}}_3^- $ -
Key words:
- riparian zone /
- water conservancy project /
- groundwater level /
- nitrogen /
- Hanjiang River /
- sediment
-
表 1 河岸带沉积物TN、
${\rm{NH}}_4^+ $ -N、${\rm{NO}}_2^- $ -N、${\rm{NO}}_3^- $ -N含量及其统计学特征Table 1. TN,
${\rm{NH}}_4^+ $ -N,${\rm{NO}}_2^- $ -N, N${\rm{NO}}_3^- $ -N contents and their statistical characteristics in riparian zone sedimentsA剖面 B剖面 C剖面 综合 变化范围/(mg·kg−1) 29.80~806.0 23.30~960.0 12.40~1010 12.40~1010 TN W(平均值±标准差)/(mg·kg−1) 282.0±168.0 251.0±189.0 199.0±202.0 242.0±190.0 变异系数/% 59.80 75.50 101.0 78.60 变化范围/(mg·kg−1) 0.1040 ~5.230 0.005000~2.570 0.03100~0.4930 0.005000~5.230 -N W(平均值±标准差)/(mg·kg−1) 0.5590±0.8870 0.3600±0.4590 0.1710±0.1070 0.3520±0.5690 变异系数/% 157.0 128.0 62.30 162.0 变化范围 /(mg/kg) 0.01200~1.060 0~0.4820 0.01400~0.4760 0~1.060 -N W(平均值±标准差/(mg·kg−1) 0.1170±0.2170 0.04800±0.09500 0.05300±0.08400 0.07000±0.1420 变异系数/% 186.0 199.0 157.0 203.0 变化范围/(mg·kg−1) 0~54.4 0~29.6 0.184~25.3 0~54.4 -N W(平均值±标准差)/(mg·kg−1) 5.020±9.300 3.430±5.320 3.970±5.380 4.090±6.730 变异系数/% 185.0 155.0 135.0 165.0 表 2 河岸带氮素含量与土壤理化性质相关性分析
Table 2. Correlation analysis of nitrogen content and soil physical and chemical properties in riparian zone
ON TOC pH Eh 黏粒含量 粉粒含量 砂粒含量 土壤含水量 TN 0.999** 0.949** −0.500** −0.163 0.363** 0.298** −0.347** −0.0360 -N 0.385** 0.327** −0.266** −0.227** 0.0100 0.206* −0.195* 0.0770 -N 0.574** 0.576** 0.289** −0.0300 0.0350 0.248** −0.240** −0.240** -N 0.425** 0.370** −0.225 −0.101 0.0120 0.0470 −0.0420 −0.227** 注:**表示在0.01水平显著相关;*表示在0.05水平显著相关。 -
[1] GREGORY S V, SWANSON F J, MCKEE W A, et al. An ecosystem perspective of riparian zones[J]. Bioscience,1991,41(8):540 − 551. doi: 10.2307/1311607
[2] VIDON P, ALLAN C, BURNS D, et al. Hot spots and hot moments in riparian zones: potential for improved water quality management[J]. Jawra Journal of the American Water Resources Association,2010,46(2):278 − 298. doi: 10.1111/j.1752-1688.2010.00420.x
[3] 李锐, 牛江波, 杨超, 等. 长江上游江津段河岸带对陆源氮磷的拦截作用研究[J]. 西南大学学报(自然科学版),2017,39(10):11 − 19. [LI Rui, NIU Jiangbo, YANG Chao, et al. Study on the interception of riparian to nitrogen and phosphorus at Deganba of Jiangjin in the upper reaches of the Yangtze River[J]. Journal of Southwest University (Natural Science Edition),2017,39(10):11 − 19. (in Chinese)
[4] PETERJOHN W T, CORRELL D L. Nutrient dynamics in an agricultural watershed : observations on the role of a riparian forest[J]. Ecology,1984,65(5):1466 − 1475. doi: 10.2307/1939127
[5] HEFTING M M, CLEMENT J, BIENKOWSKI P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe[J]. Ecological Engineering,2005,24(5):465 − 482. doi: 10.1016/j.ecoleng.2005.01.003
[6] SUN R, DENG W Q, YUAN X Z, et al. Riparian vegetation after dam construction on mountain rivers in China[J]. Ecohydrology,2014,7(4):1187 − 1195.
[7] 郭劲松, 黄轩民, 张彬, 等. 三峡库区消落带土壤有机质和全氮含量分布特征[J]. 湖泊科学,2012,24(2):213 − 219. [GUO Jinsong, HUANG Xuanmin, ZHANG Bin, et al. Distribution characteristics of organic matter and total nitrogen in soils of water-levelfluctuating zone of Three Gorges Reservoir area[J]. Journal Lake Sciences,2012,24(2):213 − 219. (in Chinese with English abstract) doi: 10.18307/2012.0207
[8] 孔涛, 张德胜, 寇涌苹, 等. 浑河上游典型植被河岸带土壤有机碳、全氮和全磷分布特征[J]. 土壤,2014,46(5):793 − 798. [KONG Tao, ZHANG Desheng, KOU Yongping, et al. Soil organic carbon, total nitrogen and total phosphorus distribution of typical vegetation riparian zones in upper reaches of Hun River[J]. Soils,2014,46(5):793 − 798. (in Chinese with English abstract)
[9] 张雷, 秦延文, 郑丙辉, 等. 三峡入库河流大宁河回水区浸没土壤及消落带土壤氮形态及分布特征[J]. 环境科学,2009,30(10):2884 − 2890. [ZHANG Lei, QIN Yanwen, ZHENG Binghui, et al. Nitrogen forms and its distribution character in immerged and water-level-fluctuating zone soils of the backwater reach from input river of Three Gorges Reservoir[J]. Chinese Journal of Environmental Science,2009,30(10):2884 − 2890. (in Chinese with English abstract)
[10] 袁辉, 王里奥, 胡刚, 等. 三峡库区消落带受淹土壤氮和磷释放的模拟实验[J]. 环境科学研究,2008,21(1):103 − 106. [YUAN Hui, WANG Li'ao, HU Gang, et al. Release of N, P from submerged soil in the shore-area of Three Gorges Reservoir[J]. Research of Environmental Sciences,2008,21(1):103 − 106. (in Chinese with English abstract)
[11] 邓青军, 唐仲华. 江汉平原水土地质环境综合监测与评价[J]. 水文地质工程地质,2014,41(4):131 − 135. [DENG Qingjun, TANG Zhonghua. Soil-groundwater geological environment integrated monitoring and evaluation in Jianghan Plain[J]. Hydrogeology & Engineering Geology,2014,41(4):131 − 135. (in Chinese with English abstract)
[12] 李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)
[13] LIU W Z, XIONG Z Q, LIU H, et al. Catchment agriculture and local environment affecting the soil denitrification potential and nitrous oxide production of riparian zones in the Han River Basin, China[J]. Agricultural Ecosystems & Environment,2016,216:147 − 154.
[14] 陈江军, 刘波, 蔡烈刚, 等. 基于多种方法的土壤重金属污染风险评价对比—以江汉平原典型场区为例[J]. 水文地质工程地质,2018,45(6):164 − 172. [CHEN Jiangjun, LIU Bo, CAI Liegang, et al. Comparison of risk assessment based on the various methods of heavy metals in soil: a case study for the typical field areas in the Jianghan Plain[J]. Hydrogeology & Engineering Geology,2018,45(6):164 − 172. (in Chinese with English abstract)
[15] 王丽. 鄂豫陕交界地区生态环境保护与管理[J]. 中国经贸导刊,2015(22):60 − 61. [WANG Li. Ecological environment protection and management in the border area of Hubei, Henan and Shanxi[J]. China Economic & Trade Herald,2015(22):60 − 61. (in Chinese)
[16] 张长征, 黄家文, 李凯, 等. 汉江兴隆水利枢纽库区两岸浸没治理[J]. 人民长江,2009,40(22):23 − 24. [ZHANG Changzheng, HUANG Jiawen, LI Kai, et al. Immersion treatment on the banks of Xionglong Hydropower Project on the Hanjiang River[J]. Yangtze River,2009,40(22):23 − 24. (in Chinese)
[17] XIONG Z Q, GUO L D, ZHANG Q F, et al. Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China[J]. Environmental Science & Technology,2017,51(10):5483 − 5491.
[18] 曾凯, 刘琳, 蔡义民, 等. 地下生态系统中氮素的循环及影响因素[J]. 草业科学,2017,34(3):502 − 514. [ZENG Kai, LIU Lin, CAI Yimin, et al. The nitrogen cycle and factors affecting it in the belowground ecosystem[J]. Pratacultural Science,2017,34(3):502 − 514. (in Chinese with English abstract)
[19] 杜宁宁, 郭晋平, 陈东莉. 河岸带落叶松林土壤氮素空间格局研究[J]. 山西林业科技,2011,40(1):4 − 6. [DU Ningning, GUO Jinping, CHEN Dongli. Spatial pattern of soil nitrogen in the riparian zone of larch forest[J]. Shanxi Forestry Science and Technology,2011,40(1):4 − 6. (in Chinese with English abstract)
[20] 崔楠, 吕光辉, 刘晓星, 等. 胡杨、梭梭群落土壤理化性质及其相互关系[J]. 干旱区研究,2015,32(3):476 − 482. [CUI Nan, LV Guanghui, LIU Xiaoxing, et al. Soil physical-chemical properties of populus euphratica and haloxylon persicum communities and their relationship[J]. Arid Zone Research,2015,32(3):476 − 482. (in Chinese with English abstract)
[21] 陈敏, 刘建虎, 叶成林, 等. 河岸带对氮磷的截留转化作用[J]. 云南农业,2017(9):77 − 80. [CHEN Ming, LIU Jianhu, YE Chenglin, et al. The interception and transformation of nitrogen and phosphorus in riparian zone[J]. Yunnan Agriculture,2017(9):77 − 80. (in Chinese)
[22] 常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报,2011,26(7):1236 − 1244. [CHANG Chao, XIE Zongqiang, XIONG Gaoming, et al. The effect of flooding on soil physical and chemical properties of riparian zone in the Three Gorges Reservoir[J]. Journal of Natural Resources,2011,26(7):1236 − 1244. (in Chinese with English abstract)
[23] 白军红, 邓伟, 张玉霞, 等. 洪泛区天然湿地土壤有机质及氮素空间分布特征[J]. 环境科学,2002, 23(2):77 − 81. [BAI Junhong, DENG Wei, ZHANG Yuxia, et al. Spacial distribution characteristics of soil organic matter and nitrogen in the natural floodplain wetland[J]. Chinese Journal of Environmental Science,2002, 23(2):77 − 81. (in Chinese with English abstract)
[24] SAHRAWAT K L. Organic matter accumulation in submerged soils[J]. Advances in Agronomy,2003,81:169 − 201.
[25] 董元华, 徐琪. 水成土壤演化中有机质含量变化的研究[J]. 生态学报,1990,10(4):323 − 327. [DONG Yuanhua, XU Qi. Study on changes in organic matter content in the succession of hydro-morphic soils[J]. Acta Ecologica Sinica,1990,10(4):323 − 327. (in Chinese with English abstract)
[26] 孙志高, 刘景双. 湿地土壤的硝化-反硝化作用及影响因素[J]. 土壤通报,2008,39(6):1462 − 1467. [SUN Zhigao, LIU Jingshuang. Nitrification-denitrification and its affecting factors in wetland soil-A review[J]. Chinese Journal of Soil Science,2008,39(6):1462 − 1467. (in Chinese with English abstract)
[27] 金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报,2006, 37(5):909 − 915. [JIN Xiangcan, CUI Zhe, WANG Shengrui. Nitrogen mineralization processes of sediments and soil under continuously waterlogged incubation conditions[J]. Chinese Journal of Soil Science,2006, 37(5):909 − 915. (in Chinese with English abstract)
[28] 白军红, 欧阳华, 邓伟, 等. 湿地氮素传输过程研究进展[J]. 生态学报,2005, 25(2):326 − 333. [BAI Junhong, OUYANG Hua, DENG Wei, et al. A review on nitrogen transmission processes in natural wetlands[J]. Acta Ecologica Sinica,2005, 25(2):326 − 333. (in Chinese with English abstract)
[29] 王勤, 刘广军, 张凯, 等. 合肥老城区绿地土壤pH和氮磷的空间变异特征[J]. 长江流域资源与环境,2014,23(8):1173 − 1178. [WANG Qin, LIU Guangjun, ZHANG Kai, et al. Spatial variability of soil pH, nitrogen and phosphorus of urban Greenland in central Hefei[J]. Resources and Environment in the Yangtze Basin,2014,23(8):1173 − 1178. (in Chinese with English abstract)
[30] 赵清贺, 刘倩, 马丽娇, 等. 黄河中下游典型河岸带土壤性质空间变异及其对环境的响应[J]. 应用生态学报,2015,26(12):3795 − 3802. [ZHAO Qinghe, LIU Qian, MA Lijiao, et al. Spatial variation in riparian soil properties and its response to environmental factors in typical reach of the middle and lower reaches of the Yellow River[J]. Chinese Journal of Applied Ecology,2015,26(12):3795 − 3802. (in Chinese with English abstract)
[31] 王智, 陈刚亮, 李建华. 崇明岛不同类型河岸带土壤碳氮分布特征[J]. 安徽农业科学,2013,41(22):9266 − 9269. [WANG Zhi, CHEN Gangliang, LI Jianhua. Distribution characteristics of soil carbon and nitrogen in different riparian zones in Chongming Island[J]. Journal of Anhui Agricultural Sciences,2013,41(22):9266 − 9269. (in Chinese with English abstract)
[32] 冉炜, 沈其荣, 郑金伟, 等. 土壤硝化作用过程中亚硝态氮的累积研究[J]. 土壤学报,2000, 37(4):474 − 481. [RAN Wei, SHENG Qirong, ZHENG Jinwei, et al. Nitrite accumulation in the process of nitrification in different agricultural soils of China[J]. Acta Pedologica Sinica,2000, 37(4):474 − 481. (in Chinese with English abstract)