A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake
-
摘要:
地表水与地下水相互转化关系一直是水文地质研究的热点问题。以往研究更多关注河流的河岸带,但对于相对静止水体——湖泊的湖岸带研究相对偏少。选择白洋淀湖岸带作为研究对象,在周边湖岸带系统部署水位、水温监测系统,采用温度示踪法,开展白洋淀湖岸带区域的地表水与地下水垂向交换量化研究。同时,结合达西定律,间接反演获取垂向渗透系数,系统总结出一套联合利用温度示踪法和达西定律定量研究湿地垂向水交换的方法。结果表明,白洋淀湖岸带以地表水渗漏补给地下水为主,其垂向交换流速可达0.2~1.1 cm/d,沉积岩性主要为粉质黏土、粉土及粉细砂,垂向渗透系数为0.038~0.912 m/d。研究结果可为制定白洋淀湿地补水方案和生态环境保护措施提供基础数据支撑。
Abstract:Interaction between surface water and groundwater has always been a hot topic in hydrogeological researches. Previous studies focused on the hyporheic zone of rivers, but the hypolentic zone of lakes with relatively static water bodies was seldom examined. The Baiyangdian Wetlands is taken as a pilot area in this study, and a monitoring system of water table and temperature is set up. The vertical interaction fluxes between surface water and groundwater is quantified by using a heat tracing method. According to the Darcy’s Law, the vertical coefficient of permeability is calculated inversely. Based on the heat tracing method and the Darcy’s Law, a way of quantifying vertical interaction between surface water and groundwater is summarized. The results show that infiltration from surface water to groundwater around the banks of the Baiyangdian Wetlands is dominant in the interaction procedure. The total infiltration velocity from surface water to groundwater during the monitoring period ranges from 0.2 to 1.1 cm/d, and the vertical hydraulic conductivity, from 0.038 to 0.912 m/d. The conclusions in this paper can provide data support for strategy of water diversion and protection of eco-environment in the Baiyangdian Wetlands.
-
-
表 1 地表水-地下水交换转化定量研究常用方法
Table 1. Methods for quantification of interaction between surface water and groundwater
序号 方法 原理 适用性与优越性 局限性 文献 1 直接测量法 利用渗流仪、水头压差计等测定地表水-地下水界面水流通量 点位上直接捕获界面通量,原位数据准确度较高 观测尺度较小,区域代表性略差,需多组重复试验,对沉积物有一定扰动 [5] 2 水量平衡法 通过确定源汇项的水量,推算出地表水-地下水界面通量 控制一些流域尺度上便于直接测量的水均衡项,推得难以测定的均衡项 需要长时间序列的准确数据,但蒸散发量等具有较大不确定性,得到某时段内的平均通量水平 [6] 3 水动力学法 监测水位差、沉积物渗透系数等,基于达西定律、裘布依公式计算 使用范围较广,点位、垂向剖面以及面状区域均可使用 获取准确的原始数据有一定困难,计算可能存在误差传递 [4] 4 温度示踪法 通过不同深度处温度观测和热力学方法进行解析计算 温度随时间及深度的变化较明显,温度连续监测成本低、灵敏度高、数据获取直接、质量稳定 应用时存在前提假设条件,相关热力学参数较难直接测定,需对原始数据进行傅里叶变换、带通滤波等预处理 [7] 5 水化学/同位素法 保守离子/同位素作为示踪剂,不同端元浓度/活度差异较大,基于质量守恒定律求解 可平滑掉水交换的非均一性,获得流域、区域等大空间尺度的平均通量结果 化学组分的测定存在一定误差,受端元浓度/活度值影响较大 [8-9] 6 数值模拟法 对实际问题概化后,借助计算机强大的运算能力,采用有限元/差分方法,对数学模型的偏微分方程进行高效迭代求解 适用于多种不同时空尺度,能快速处理现实复杂的水文条件、边界条件、初始条件 地表水和地下水流动控制方程不同,模型简化会带来误差,耦合二者的计算量更大,需分析模型收敛性、稳定性、参数敏感性和结果不确定性 [2] 表 2 地下水监测层中心埋深
Table 2. Depths of the monitoring layers at different locations
编号 监测层 监测层埋深/ m 编号 监测层 监测层埋深/ m D50 D200 D50 D200 P1 1# 0.60 0.60 P7 1# 1.35 0.60 2# 1.30 1.30 2# 5.35 2.20 3# 5.10 5.60 3# 9.15 7.10 P2 1# 0.60 1.40 P8 1# 0.30 0.60 2# 1.40 2.10 2# 1.00 1.50 3# 6.10 7.30 3# 4.10 7.40 P3 1# 1.80 1.50 P9 1# 1.20 0.80 2# 2.50 3.20 2# 2.70 4.00 3# 7.50 7.10 3# 7.00 7.30 P4 1# 2.60 1.90 P10 1# 0.40 1.25 2# 4.60 4.60 2# 1.40 3.70 3# 8.10 8.60 3# 6.20 6.50 P5 1# 0.50 2.00 P11 1# 1.90 0.70 2# 2.50 3.00 2# 3.40 1.80 3# 4.70 5.30 3# 8.10 8.15 P6 1# 1.20 0.40 P12 1# 0.25 0.20 2# 4.10 4.10 2# 3.45 0.90 3# 6.30 7.40 3# 5.25 4.00 表 3 稳定态时段垂向交换流速vz计算结果
Table 3. Vertical exchange velocities during steady phases
/(cm∙d−1) 监测站点编号 垂向交换流速vz D50 D200 P1 0.7 N/A P2 0.4 0.3 P3 0.5 0.3 P4 N/A N/A P5 0.6 0.2 P6 1.0 N/A P7 N/A N/A P8 1.1 0.4 P9 0.4 N/A P10 0.8 N/A P11 N/A N/A P12 N/A N/A 范围 0.4~1.1 0.2~0.4 注:N/A代表数据缺失或不存在稳定态时段。 表 4 垂向渗透系数Kz计算结果
Table 4. Equivalent vertical coefficient of permeability
/(m∙d−1) 监测站点编号 垂向渗透系数Kz D50 D200 P1 0.101 N/A P2 0.210 0.169 P3 0.173 0.912 P4 N/A N/A P5 0.074 0.038 P6 0.294 N/A P7 N/A N/A P8 0.316 0.272 P9 0.047 N/A P10 0.041 N/A P11 N/A N/A P12 N/A N/A 范围 0.041~0.316 0.038~0.912 -
[1] 李勇, 张维维, 袁佳慧, 等. 潜流带水流特性及氮素运移转化研究进展[J]. 河海大学学报(自然科学版),2016,44(1):1 − 7. [LI Yong, ZHANG Weiwei, YUAN Jiahui, et al. Research advances in flow patterns and nitrogen transformation in hyporheic zones[J]. Journal of Hohai University (Natural Sciences),2016,44(1):1 − 7. (in Chinese with English abstract)
[2] 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学,2017,37(8):3002 − 3010. [ZHU Jinfeng, LIU Yueyi, ZHANG Shu'an, et al. Review on the research of surface water and groundwater interactions[J]. China Environmental Science,2017,37(8):3002 − 3010. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2017.08.024
[3] 王文科, 李俊亭, 王钊, 等. 河流与地下水关系的演化及若干科学问题[J]. 吉林大学学报(地球科学版),2007,37(2):231 − 238. [WANG Wenke, LI Junting, WANG Zhao, et al. Evolution of the relationship between river and groundwater and several scientific problems[J]. Journal of Jilin University (Earth Science Edition),2007,37(2):231 − 238. (in Chinese with English abstract)
[4] 胡俊锋, 王金生, 滕彦国. 地下水与河水相互作用的研究进展[J]. 水文地质工程地质,2004,31(1):108 − 113. [HU Junfeng, WANG Jinsheng, TENG Yanguo. Study progress of interaction between stream and groundwater[J]. Hydrogeology & Engineering Geology,2004,31(1):108 − 113. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2004.01.028
[5] 李刚, 李海涛, 孙璐, 等. 沉积物—水界面水流通量研究之渗流仪直接测量法回顾与进展[J]. 地质论评,2019,65(增刊1):24 − 26. [LI Gang, LI Haitao, SUN Lu, et al. Retrospect andprogress on seepage meters for direct measurement ofwater flux across sediment-water surfaces[J]. Geological Review,2019,65(Sup1):24 − 26. (in Chinese with English abstract)
[6] 王秀艳. 白洋淀湿地系统地表水和地下水相互关系的研究[D]. 保定: 河北农业大学, 2011.
WANG Xiuyan. Study on relationship between surface water and groundwater of Baiyangdian Wetland System[D]. Baoding: Hebei Agricultural University, 2011. (in Chinese with English abstract)
[7] KALBUS E, REINSTORF F, SCHIRMER M. Measuring methods for groundwater – surface water interactions: a review[J]. Hydrology and Earth System Sciences,2006,10(6):873 − 887. doi: 10.5194/hess-10-873-2006
[8] 张敏, 平建华, 禹言, 等. 同位素技术解析安阳河与地下水相互作用[J]. 水文地质工程地质,2019,46(6):31 − 39. [ZHANG Min, PING Jianhua, YU Yan, et al. Isotope analyses of the interaction between the Anyang River and groundwater[J]. Hydrogeology & Engineering Geology,2019,46(6):31 − 39. (in Chinese with English abstract)
[9] 孔晓乐, 王仕琴, 丁飞, 等. 基于水化学和稳定同位素的白洋淀流域地表水和地下水硝酸盐来源[J]. 环境科学,2018,39(6):2624 − 2631. [KONG Xiaole, WANG Shiqin, DING Fei, et al. Source of nitrate in surface water and shallow groundwater around Baiyangdian lake area based on hydrochemical and stable isotopes[J]. Environmental Science,2018,39(6):2624 − 2631. (in Chinese with English abstract)
[10] 王蕊, 王中根, 夏军, 等. 气候变化及南水北调中线工程对白洋淀流域水文的影响[J]. 水力发电学报,2012,31(2):14 − 19. [WANG Rui, WANG Zhonggen, XIA Jun, et al. Effects of climate change and the south-north water transfer project on hydrology in Baiyangdian basin[J]. Journal of Hydroelectric Engineering,2012,31(2):14 − 19. (in Chinese with English abstract)
[11] 赵志轩. 白洋淀湿地生态水文过程耦合作用机制及综合调控研究[D]. 天津: 天津大学, 2012.
ZHAO Zhixuan. Coupling mechanism of eco-hydrological processes and integrated regulation in Baiyangdian wetland[D]. Tianjin: Tianjin University, 2012. (in Chinese with English abstract)
[12] 吴忱, 许清海. “演变阶段”与“成因”不能混为一谈──也谈白洋淀的成因[J]. 湖泊科学,1998,10(3):91 − 96. [WU Chen, XU Qinghai. Formation or development stage-A discussion on the cause of the formation of Baiyangdian lake, China[J]. Journal of Lake Science,1998,10(3):91 − 96. (in Chinese with English abstract) doi: 10.18307/1998.0316
[13] 王凯霖, 李海涛, 吴爱民, 等. 人工补水条件下白洋淀湿地演变研究[J]. 地球学报,2018,39(5):549 − 558. [WANG Kailin, LI Haitao, WU Aimin, et al. An analysis of the evolution of Baiyangdian wetlands in Hebei Province with artificial recharge[J]. Acta Geoscientica Sinica,2018,39(5):549 − 558. (in Chinese with English abstract) doi: 10.3975/cagsb.2018.071102
[14] SUZUKI S. Percolation measurements based on heat flow through soil with special reference to paddy fields[J]. Journal of Geophysical Research,1960,65(9):2883 − 2885. doi: 10.1029/JZ065i009p02883
[15] BREDEHOEFT J D, PAPAOPULOS I S. Rates of vertical groundwater movement estimated from the Earth’s thermal profile[J]. Water Resources Research,1965,1(2):325 − 328. doi: 10.1029/WR001i002p00325
[16] 葛孟琰, 马瑞, 孙自永, 等. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例[J]. 地球科学,2018,43(11):4246 − 4255. [GE Mengyan, MA Rui, SUN Ziyong, et al. Using heat tracer to estimate river water and groundwater interactions in alpine and cold regions: a case study of hulugou watershed in upper reach of Heihe river[J]. Earth Science,2018,43(11):4246 − 4255. (in Chinese)
[17] WADE S C, REITER M. A hydrothermal study to estimate vertical groundwater flow in the canutillo well field, between las cruces and el paso[R]. MS: New Mexico Water Resources Research Institute, 1994.
[18] 俞亚南, 徐坚, 冯建江. 粉性土导热系数的室内实验研究[J]. 浙江大学学报(工学版),2010,44(1):180 − 183. [YU Yanan, XU Jian, FENG Jianjiang. Laboratory experiment on thermal conductivity of silty clay[J]. Journal of Zhejiang University (Engineering Science),2010,44(1):180 − 183. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2010.01.032
[19] BRIGGS M A, BUCKLEY S F, BAGTZOGLOU A C, et al. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling[J]. Water Resources Research,2016,52(7):5179 − 5194. doi: 10.1002/2015WR018219
[20] 陈望和. 河北地下水[M]. 北京: 地震出版社, 1999.
CHEN Wanghe. Hebei groundwater[M]. Beijing: Seismological Press, 1999. (in Chinese)
[21] 尹立河, 王晓勇, 黄金廷, 等. 大克泊湖床垂向渗透系数试验研究[J]. 盐湖研究,2011,19(1):1 − 8. [YIN Lihe, WANG Xiaoyong, HUANG Jinting, et al. Estimation of lakebed vertical hydraulic conductivity through ln-situ experiments for Habor Lake[J]. Journal of Salt Lake Research,2011,19(1):1 − 8. (in Chinese with English abstract)
[22] 尹立河, 李瑛, 窦妍, 等. 乞盖淖湖湖床垂向渗透系数试验研究[J]. 盐湖研究,2009,17(3):23 − 28. [YIN Lihe, LI Ying, DOU Yan, et al. In-situ vertical hydraulic conductivity test for Qigainao Lake[J]. Journal of Salt Lake Research,2009,17(3):23 − 28. (in Chinese with English abstract)
-