Change in temporal-spatial pattern of vegetation coverage in Weichang County based on Landsat remote sensing image
-
摘要: 基于Google Earth Engine遥感云平台收集1987—2016年Landsat系列遥感卫星影像,采用像元二分模型对承德市围场满族蒙古族自治县植被覆盖度进行估算,结合气象数据和地形信息,分析近30年来研究区植被覆盖动态变化规律。结果表明:围场县1987—2016年的归一化植被指数(NDVI)值总体上呈上升趋势,全县NDVI平均值从0.63提高到了0.78,植被覆盖状况不断改善。研究区植被改善情况中,1987—2016年NDVI大于0.15的面积比例占到全县植被面积的49.28%,占比最大。1987—2016年NDVI小于等于-0.15的植被面积比例仅为0.82%。1987—2016年,各级植被覆盖度的转移矩阵体现出2016年的植被状况明显好于1987年,极高覆盖度植被转入面积高达7 991.84 km2。1987—2016年植被覆盖景观破碎程度不断降低,平均斑块面积指数从13.147 8扩大到31.703 4,植被覆盖类型趋于集中分布,连通性好。研究区总体气候变化趋势对植被生长具有不利影响,不同坡度和坡向的植被覆盖状况不同,人类活动和社会经济因素的影响为研究区植被改善情况发挥着重要作用。Abstract: Based on the Google Earth engine remote sensing cloud platform, the Landsat series remote sensing satellite images from 1987 to 2016 were collected, and the vegetation coverage of Weichang Manchu and Mongolian Autonomous County in Chengde was estimated by using the pixel binary model, and the dynamic changes in vegetation coverage in the study area in the past 30 years were analyzed through combining the meteorological data and terrain information. The results indicate that the normalized vegetation index (NDVI) value of Weichang County from 1987 to 2016 showed an overall upward trend, and the average NDVI value of Weichang County increased from 0.63 to 0.78, and the vegetation coverage status improved continuously. Among the vegetation improvement in the study area, 49.28% of the county's vegetation area was accounted for with the NDVI difference value > 0.15 from 1987 to 2016 (with the largest proportion), while the proportion of vegetation area with NDVI difference value less than -0.15 from 1987 to 2016 was only 0.82%. The transfer matrix of vegetation coverage at all levels from 1987 to 2016 shows that the vegetation condition in 2016 was obviously better than that in 1987, and the area of vegetation with extremely high coverage was 7 991.84 km2. From 1987 to 2016, the fragmentation degree of vegetation coverage landscape decreased continuously, the average patch area index increased from 13.147 8 to 31.703 4, and the vegetation coverage types tended to be centralized distribution with good connectivity. The overall climate change trend in the study area has adverse effects on vegetation growth. The vegetation coverage of different slope and aspect is different. The influence of human activities and socio-economic factors plays an important role in vegetation improvement in the study area.
-
Key words:
- Landsat /
- paddock /
- NDVI /
- vegetation coverage /
- temporal and spatial pattern
-
[1] 贾宝全, 邱尔发. 石家庄市域近期植被变化及其驱动因素分析[J]. 干旱区地理, 2014, 37(1):106-114.[JIA B Q, QIU E F. Vegetation changes and its driving factors in Shijiazhuang City from 2004 to 2010 based on Landsat TM imagine[J]. Arid Land Geography, 2014, 37(1):106-114.(in Chinese)]
[2] 于泉洲, 梁春玲, 刘煜杰. 近30年长江口崇明东滩植被对于气候变化的响应特征[J]. 生态科学, 2014, 33(6):1169-1176.[YU Q Z, LIANG C L, LIU Y J. Vegetation responses to climatic change in Yangtze River Delta wetlands during the past 30 years[J]. Ecological Science, 2014, 33(6):1169-1176.(in Chinese)]
[3] 张超, 余树全, 李土生. 基于多时相Landsat影像的庆元县植被覆盖变化研究[J]. 浙江农林大学学报, 2011, 28(1):72-79.[ZHANG C, YU S Q, LI T S. Image analysis of vegetation coverage and changes(1994-2007) in Qingyuan County using multi-temporal Landsat remote sensing[J]. Journal of Zhejiang A & F University, 2011, 28(1):72-79.(in Chinese)]
[4] 林玉英, 胡喜生, 邱荣祖, 等. 基于Landsat影像的NDVI对植被与影响因子交互耦合的响应[J]. 农业机械学报, 2018, 49(10):212-219.[LIN Y Y, HU X S, QIU R Z, et al. Responses of landsat-based NDVI to interaction of vegetation and influencing factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):212-219.(in Chinese)]
[5] 李恒凯, 雷军, 杨柳. 基于Landsat影像的离子稀土矿区植被覆盖度提取及景观格局分析[J]. 农业工程学报, 2016, 32(10):267-276.[LI H K, LEI J, YANG L. Extraction of vegetation coverage and analysis of landscape pattern in rare earth mining area based on Landsat image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10):267-276.(in Chinese)]
[6] 丁春晓,周汝良,叶江霞,等.地形起伏对陆地卫星的NDVI影响研究[J].林业资源管理,2016,8(4):101-106.[DING C X, ZHOU R L,YE J X,et al. Study on the effect of topographic relief on NDVI of Landsat[J]. Forest Resources Management,2016,8(4):101-106.(in Chinese)]
[7] 李永祥,邓丽娟,赵会艳,等.浅析木兰围场自然保护区的演变过程[J].安徽农学通报,2010,16(16):141.[LI Y X, DENG L J,ZHAO H Y,et al.Analysis of the evolution process of mulanweichang nature reserve[J]. Anhui Agricultural Science Bulletin,2010,16(16):141.(in Chinese)]
[8] 张淑兰,张海军,徐成立,等.河北木兰围场自然保护区现状及发展对策研究[J].河北林果研究,2006,21(4):460-464.[ZHANG S L,ZHANG H J,XU C L,et al.Study on the current situation and development strategies of Mulanweichang Nature Reserve in Hebei Province[J].Hebei Journal of Forestry and Orchard Research,2006,21(4):460-464.(in Chinese)]
[9] 苏王新, 李卓, 陈书琴, 等. 河北坝上地区植被覆盖演化特征及其风险评估[J]. 干旱区研究, 2018, 35(3):686-694.[SU W X, LI Z, CHEN S Q, et al. Evolution trend of vegetation coverage and its risk assessment in the Bashang region in Hebei Province[J]. Arid Zone Research, 2018, 35(3):686-694.(in Chinese)]
[10] 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4):600-611.[HAO B F, HAN X J, MA M G, et al. Research progress on the application of google earth engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application, 2018, 33(4):600-611.(in Chinese)]
[11] 陈晋, 陈云浩, 何春阳, 等. 基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J]. 遥感学报, 2001, 5(6):416-422.[CHEN J, CHEN Y H, HE C Y, et al. Sub-pixel model for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing, 2001, 5(6):416-422.(in Chinese)]
[12] 周洪建, 王静爱, 岳耀杰, 等. 人类活动对植被退化/恢复影响的空间格局——以陕西省为例[J]. 生态学报, 2009, 29(9):4847-4856.[ZHOU H J, WANG J A, YUE Y J, et al. Research on spatial pattern of human-induced vegetation degradation and restoration:a case study of Shaanxi Province[J]. Acta Ecologica Sinica, 2009, 29(9):4847-4856.(in Chinese)]
[13] 吕丹红, 姜琦刚, 王德军, 等. Landsat数据的植被覆盖估算和景观格局分析[J]. 测绘科学, 2018, 43(11):157-164.[LV D H, JIANG Q G, WANG D J, et al. Estimation of vegetation cover and analysis of landscape pattern base on Landsat data[J]. Science of Surveying and Mapping, 2018, 43(11):157-164.(in Chinese)]
[14] 贾宝全. 基于TM卫星影像数据的北京市植被变化及其原因分析[J]. 生态学报, 2013, 33(5):1654-1666.[JIA B Q. Driving factor analysis on the vegetation changes derived from the Landsat TM images in Beijing[J]. Acta Ecologica Sinica, 2013, 33(5):1654-1666.(in Chinese)]
[15] 常伟强. 塞罕坝机械林场森林资源动态变化分析[J]. 林业资源管理, 2018(6):13-17.[CHANG W Q. Analysis on dynamic changes of the forest resources in Saihanba mechanized forest farm[J]. Forest Resources Management, 2018(6):13-17.(in Chinese)]
-
计量
- 文章访问数: 1025
- PDF下载数: 99
- 施引文献: 0