安阳市地下水源热泵系统建设水资源管理区划研究

朱文举, 平建华, 侯俊山, 宁艺武, 耿文斌. 安阳市地下水源热泵系统建设水资源管理区划研究[J]. 水文地质工程地质, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003
引用本文: 朱文举, 平建华, 侯俊山, 宁艺武, 耿文斌. 安阳市地下水源热泵系统建设水资源管理区划研究[J]. 水文地质工程地质, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003
ZHU Wenju, PING Jianhua, HOU Junshan, NING Yiwu, GENG Wenbin. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003
Citation: ZHU Wenju, PING Jianhua, HOU Junshan, NING Yiwu, GENG Wenbin. A study of the water resources management and division of the groundwater heat pump system construction in Anyang[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202011003

安阳市地下水源热泵系统建设水资源管理区划研究

  • 基金项目: NSFC-河南人才培养联合基金(U1504404);河南省科技厅重点攻关项目(122102210101);河南省教育厅科学技术研究重点项目(12A170009)
详细信息
    作者简介: 朱文举(1993-),男,硕士研究生,主要从事浅层地热能的开发利用研究。E-mail:1534115813@qq.com
    通讯作者: 平建华(1976-),男,博士,教授,主要从事水文地质教学和研究工作。E-mail:pingjianhua@zzu.edu.cn
  • 中图分类号: P641.8;P314.9

A study of the water resources management and division of the groundwater heat pump system construction in Anyang

More Information
  • 为从赋存条件和水资源管理两个层面进行地下水源热泵系统建设的区划研究,实施技术与管理的结合,通过分析水文地质条件、水动力条件和水化学条件,结合水资源管理分区,建立了安阳市地下水源热泵系统水资源管理区划评价体系。采用云模型改进的层次分析法进行了一级评价,在此基础上结合水资源管理分区利用GIS空间分析功能完成二级评价,将研究区地下水源热泵系统划分了3个等级。结果表明:研究区范围内地下水源热泵系统适宜发展区面积为117.45 km2,主要分布在安阳河冲洪积扇扇体中心强富水区,部分分布在扇缘的外围区域;限制发展区面积为459.26 km2,分布在扇缘的西南和北部丘陵弱富水区以及扇体中心的地下水降落漏斗区;禁止发展区面积为24.02 km2,分布在水源地和南水北调保护区以及铁路和高速公路两旁,在研究区交错分布。在适宜性分区的基础上结合水资源管理的区划研究更全面合理,可为地下水源热泵系统科学布局及合理的开发利用提供参考。

  • 加载中
  • 图 1  研究区位置与采样点分布

    Figure 1. 

    图 2  地下水源热泵系统水资源管理区划评价结构

    Figure 2. 

    图 3  安阳市地下水源热泵系统水资源管理区划

    Figure 3. 

    表 1  研究区适宜性分区指标基本特征

    Table 1.  Basic characteristics of the suitability zoning index of the study area

    水文地质条件编号富水性/( m3·d−1)单井回灌率/%含水层厚度
    /m
    编号富水性/(m3·d−1)单井回灌率/%含水层厚度/m
    Z151854.4419Z4511275.1136
    Z267744.6517Z575665.7142
    Z3523291.7438Z6173565.5645
    水化学条件编号水化学类型硬度
    /( mg·L−1)
    溶解性总固体
    /(mg·L−1)
    编号水化学类型硬度
    /( mg·L−1)
    溶解性总固体
    /(mg·L−1)
    X1HCO3—Mg·Ca 583.51070X13HCO3·Cl—Ca620.51120
    X2HCO3·Cl—Ca 555.5 870X14HCO3—Ca540.0 900
    X3HCO3—Ca 441.0 760X15HCO3·SO4—Ca548.5 910
    X4SO4—Na 200.01150X16HCO3—Ca447.5 740
    X5HCO3—Ca 696.51160X17HCO3—Ca392.0 640
    X6HCO3—Ca 286.5 480X18HCO3·SO4—Ca499.5 780
    X7HCO3—Ca 549.0 930X19SO4·HCO3—Ca419.5 700
    X8Cl·SO4—Ca1175.51800X20HCO3—Ca348.5 590
    X9HCO3·Cl—Ca 768.01380X21HCO3·Cl—Ca691.51190
    X10HCO3—Ca·Mg 318.5 550X22HCO3·SO4—Ca596.51010
    X11HCO3—Ca 340.5 580X23HCO3·SO4—Ca548.5 910
    X12SO4·Cl—Ca 604.51230
    水动力条件编号地下水位
    埋深/m
    地下水位
    年变幅/m
    编号地下水位
    埋深/m
    地下水位
    年变幅/m
    编号地下水位
    埋深/m
    地下水位
    年变幅/m
    编号地下水位
    埋深/m
    地下水位
    年变幅/m
    Y125.75−0.13Y910.02 0.97Y17 4.68−0.07Y2561.00 3.28
    Y214.60−1.30Y1012.30 0.50Y18 3.00 0.18Y2620.10 1.60
    Y313.26−0.31Y11 5.37 0.49Y1910.96 1.16Y2715.25 0.47
    Y419.24−1.02Y12 3.40−0.43Y2026.28 0.92Y2817.48 1.03
    Y524.05−3.69Y13 6.23 1.45Y2130.64−0.19Y2914.19−0.37
    Y625.80−0.30Y14 3.31−0.74Y2230.70 0.50Y3012.72−0.28
    Y713.23 2.23Y15 4.14 0.09Y2344.32 1.22Y3112.20−0.90
    Y810.12 0.05Y16 4.76−1.19Y2436.98−2.97Y32 9.09 0.87
    下载: 导出CSV

    表 2  云模型重要性标度定义

    Table 2.  Definition of the importance scale of cloud model

    标度含义
    C1(1,0.707,0.118),Ex1=1两因素相比,要素ij具有
    同等重要性
    C3(3,0.707,0.118),Ex3=3两因素相比,要素ij具有
    稍微重要性
    C5(5,0.707,0.118),Ex5=5两因素相比,要素ij具有
    明显重要性
    C7(7,0.707,0.118),Ex7=7两因素相比,要素i和j具有
    强烈重要性
    C9(9,0.707,0.118),Ex9=9两因素相比,要素ij具有
    极端重要性
    C2(2,0.437,0.073),Ex2=2上述相邻重要性的中值
    C4(4,0.437,0.073),Ex4=4
    C6(6,0.437,0.073),Ex6=6
    C8(8,0.437,0.073),Ex8=8
    下载: 导出CSV

    表 3  云模型改进层次分析法的权重计算结果

    Table 3.  Weight calculation results of the cloud model improved AHP

    属性层权重计算要素层权重计算合成权重传统的权重计算
    ExEnHeExEnHeExEnHe专家1专家2
    水文地质条件0.6270.6110.613富水性0.5630.5560.5600.3530.3400.3430.2070.349
    回灌率0.3060.3150.3140.1920.1920.1920.3610.124
    含水层厚度0.1310.1290.1260.0820.0790.0770.0800.066
    水动力条件0.2380.2460.245地下水位埋深0.6880.6880.8740.1640.1690.2140.1530.260
    地下水位年变幅0.3130.3130.1260.0740.0770.0310.0770.130
    水化学条件0.1350.1430.142水化学类型0.5460.5440.5470.0740.0780.0780.0660.038
    硬度0.2880.2850.2870.0390.0410.0410.0360.012
    溶解性总固体0.1660.1710.1660.0220.0240.0240.0200.021
    下载: 导出CSV

    表 4  指标赋分分级

    Table 4.  Index scoring

    项目分级赋值
    富水性/(m3·d−1)(0,500)1
    [500,1000]3
    (1000,3000]6
    (3000,6000)9
    回灌率/%(0,50)4
    [50,75]6
    (75,100)9
    含水层厚度/m(0,10)3
    [10,30]5
    (30,50)8
    地下水位埋深/m(0,5)1
    [5,10]5
    (10,15]7
    (15,100)9
    地下水位年变幅/m(−5,−1.5)3
    [−1.5,−0.8]6
    (−0.8,5)8
    水化学类型HCO3—Ca8
    HCO3·Cl—Ca6
    HCO3·SO4—Ca5
    Cl·SO4—Ca3
    硬度/(mg·L−1)(0,200)7
    [200,450]4
    (450,1500)2
    溶解性总固体/(mg·L−1)(0,500)9
    [500,1000]7
    (1000, 2 000)4
    下载: 导出CSV
  • [1]

    孔维臻, 郭明晶, 陈萌, 等. 基于模糊AHP的浅层地热能适宜性分区评价方法研究[J]. 中国矿业,2013,22(2):107 − 110. [KONG Weizhen, GUO Mingjing, CHEN Meng, et al. Study on evaluation method of regionalization of shallow geothermal energy based on fuzzy AHP[J]. China Mining Magazine,2013,22(2):107 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4051.2013.02.027

    [2]

    倪龙, 封家平, 马最良. 地下水源热泵的研究现状与进展[J]. 建筑热能通风空调,2004,23(2):26 − 31. [NI Long, FENG Jiaping, MA Zuiliang. The state of research and development of groundwater heat pump systems[J]. Building Energy & Environment,2004,23(2):26 − 31. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-0344.2004.02.006

    [3]

    RUSSO S L, TADDIA G, BACCINO G, et al. Different design scenarios related to an open loop groundwater heat pump in a large building: Impact on subsurface and primary energy consumption[J]. Energy and Buildings,2011,43(2/3):347 − 357.

    [4]

    刘立才, 王金生, 张霓, 等. 北京城市规划区水源热泵系统应用适宜性分区[J]. 水文地质工程地质,2006,33(6):15 − 17. [LIU Licai, WANG Jinsheng, ZHANG Ni, et al. Suitability division for water source heat pumps in the central districts of Beijing[J]. Hydrogeology & Engineering Geology,2006,33(6):15 − 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.06.004

    [5]

    金婧, 席文娟, 陈宇飞, 等. 基于AHP的浅层地热能适宜性分区评价[J]. 水资源与水工程学报,2012,23(3):91 − 93. [JIN Jing, XI Wenjuan, CHEN Yufei, et al. Assessment of suitability of shallow geothermal energy based on AHP[J]. Journal of Water Resources and Water Engineering,2012,23(3):91 − 93. (in Chinese with English abstract)

    [6]

    马聪, 周维博, 李娜. 西安市主城区地下水源热泵适宜性分区[J]. 南水北调与水利科技,2014,12(3):156 − 159. [MA Cong, ZHOU Weibo, LI Na. Suitability zonation for groundwater source heat pumps in Xi’an[J]. South-to-North Water Transfers and Water Science & Technology,2014,12(3):156 − 159. (in Chinese with English abstract)

    [7]

    陈文芳, 杜尚海, 张一博, 等. 水源热泵运行中多组份溶质的反应迁移模拟[J]. 工程勘察,2017,45(7):32 − 38. [CHEN Wenfang, DU Shanghai, ZHANG Yibo, et al. Reactive transport simulation of multi-component solute in the operation of water source heat pump system[J]. Geotechnical Investigation & Surveying,2017,45(7):32 − 38. (in Chinese with English abstract)

    [8]

    冯连威, 王林, 马爱华, 等. 梯级利用地下水储能的地源热泵空调系统分析[J]. 河南科技大学学报(自然科学版),2020,41(3):20 − 26. [FENG Lianwei, WANG Lin, MA Aihua, et al. Exergy analysis of ground source heat pump air-conditioning system with cascade utilization of ground water energy storage[J]. Journal of Henan University of Science and Technology (Natural Science),2020,41(3):20 − 26. (in Chinese with English abstract)

    [9]

    闫峭. 地下水源热泵抽灌井群理论及应用研究——以西安市为例[D]. 西安: 长安大学, 2017

    YAN Qiao. Study on the theory and application of the ground-water heat pump wells: Taking Xi’an city as an example [D]. Xi’an: Chang’an University, 2017. ( in Chinese with English abstract )

    [10]

    李颖智, 蔡五田, 耿婷婷, 等. 区域地下水污染调查取样点布设量化分配方法[J]. 水文地质工程地质,2019,46(5):24 − 30. [LI Yingzhi, CAI Wutian, GENG Tingting, et al. Quantitative sample distribution in regional groundwater contamination investigation[J]. Hydrogeology & Engineering Geology,2019,46(5):24 − 30. (in Chinese with English abstract)

    [11]

    AKAA O U, ABU A, SPEARPOINT M, et al. A group-AHP decision analysis for the selection of applied fire protection to steel structures[J]. Fire Safety Journal,2016,86:95 − 105. doi: 10.1016/j.firesaf.2016.10.005

    [12]

    ZHOU X Y, HU Y, DENG Y, et al. A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP[J]. Annals of Operations Research,2018,271(2):1045 − 1066. doi: 10.1007/s10479-018-2769-3

    [13]

    苑雷, 陈刚. 改进层次分析法下的浅层地温能适宜性评价[J]. 可再生能源,2013,31(7):112 − 115. [YUAN Lei, CHEN Gang. Assessment of suitability of shallow geothermal energy based on improved analytic hierarchy process[J]. Renewable Energy Resources,2013,31(7):112 − 115. (in Chinese with English abstract)

    [14]

    张向营, 张春山, 孟华君, 等. 基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J]. 水文地质工程地质,2018,45(4):142 − 149. [ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide hazard evaluation in the northern mountainous area of Guide County based on Random Forest and AHP[J]. Hydrogeology & Engineering Geology,2018,45(4):142 − 149. (in Chinese with English abstract)

    [15]

    夏亮, 王永攀, 杨江平, 等. 一种基于云模型标度的改进层次分析法[J]. 空军预警学院学报,2019,33(2):112 − 115. [XIA Liang, WANG Yongpan, YANG Jiangping, et al. A modified analytical hierarchy process based on scale of cloud model[J]. Journal of Air Force Early Warning Academy,2019,33(2):112 − 115. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-5839.2019.02.008

    [16]

    PENG Y X, WU L, ZUO Q J, et al. Risk assessment of water inrush in tunnel through water-rich fault based on AHP-Cloud model[J]. Geomatics, Natural Hazards and Risk,2020,11(1):301 − 317. doi: 10.1080/19475705.2020.1722760

    [17]

    张彪, 戴兴国. 基于有限区间云模型和距离判别赋权的岩体质量分类模型[J]. 水文地质工程地质, 2017, 44(5): 150-157.

    ZHANG Biao, DAI Xingguo A classification model of rock mass based on finite interval cloud model and distance discrimination weighting[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 150 − 157. ( in Chinese with English abstract )

    [18]

    王洪利, 冯玉强. 基于云模型标度判断矩阵的改进层次分析法[J]. 中国管理科学,2005,13(增刊1):32 − 37. [WANG Hongli, FENG Yuqiang. Improved AHP based on judgment matrix scaled with cloud model[J]. Chinese Journal of Management Science,2005,13(Sup1):32 − 37. (in Chinese with English abstract)

    [19]

    江迎. 基于云模型和GIS/RS的坝堤溃决风险分析及灾害损失评估研究[D]. 武汉: 华中科技大学, 2012.

    JIANG Ying. Study on risk analysis and disaster loss assessment of dam break based on cloud model and GIS/RS[D]. Wuhan: Huazhong University of Science and Technology, 2012. ( in Chinese with English abstract )

    [20]

    LI N. Basketball culture event detection based on comprehensive integrated method[J]. Personal and Ubiquitous Computing,2020,24(47):193 − 206. doi: 10.1007/s00779-019-01254-9

    [21]

    潘俊, 张宗禹, 关昊鹏, 等. 地下水源热泵热源井布设合理性评价指标体系[J]. 沈阳建筑大学学报(自然科学版),2016,32(3):560 − 568. [PAN Jun, ZHANG Zongyu, GUAN Haopeng, et al. Rationality evaluation index system on the design of heat source well for groundwater source heat pump[J]. Journal of Shenyang Jianzhu University (Natural Science),2016,32(3):560 − 568. (in Chinese with English abstract)

    [22]

    梁乃森, 钱程, 穆文平, 等. 大牛地气田区地下水水质模糊综合评价[J]. 水文地质工程地质,2020,47(3):52 − 59. [LIANG Naisen, QIAN Cheng, MU Wenping, et al. Fuzzy comprehensive evaluation of groundwater quality of the Daniudi gas field area[J]. Hydrogeology & Engineering Geology,2020,47(3):52 − 59. (in Chinese with English abstract)

    [23]

    赖光东, 周维博, 姚炳光. 西安地区浅层承压水水源热泵适宜性评价[J]. 长江科学院院报,2017,34(12):22 − 27. [LAI Guangdong, ZHOU Weibo, YAO Bingguang. Suitability evaluation for shallow confined water source heat pump in Xi’an[J]. Journal of Yangtze River Scientific Research Institute,2017,34(12):22 − 27. (in Chinese with English abstract) doi: 10.11988/ckyyb.20161274

    [24]

    刘九龙, 林黎, 程万庆. 天津市地下水源热泵系统适宜性分区[J]. 吉林大学学报(地球科学版),2012,42(增刊1):380 − 385. [LIU Jiulong, LIN Li, CHENG Wanqing. Suitability zoning for groundwater source heat pump systems in Tianjin[J]. Journal of Jilin University (Earth Science Edition),2012,42(Sup1):380 − 385. (in Chinese with English abstract)

    [25]

    闫佰忠,孙剑,王昕洲,等. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版),2021,51(4):1172 − 1181. [YAN Baizhong, SUN Jian, WANG Xinzhou,et al. Suitability zoning of groundwater source heat pump in Shijiazhuang based on GIS-FAHP[J]. Journal of Jilin University (Earth Science Edition),2021,51(4):1172 − 1181. (in Chinese with English abstract)

    [26]

    赵静. 水源热泵对地温场的影响及适宜性评价研究——以郑州市为例[D]. 北京: 中国地质大学(北京), 2009.

    ZHAO Jing. Impact of GWSHP on groundwater temperature field and suitability assessment: A case study in Zhengzhou city[D]. Beijing: China University of Geosciences(Beijing), 2009. ( in Chinese with English abstract )

    [27]

    胡元平, 刘红卫, 柯立, 等. 武汉市都市发展区地下水源热泵适宜性评价[J]. 资源环境与工程,2014,28(6):981 − 984. [HU Yuanping,LIU Hongwei,KE Li, et al. The suitability evaluation of groundwater heat pump in the urban development area of Wuhan[J]. Resources Environment & Engineering,2014,28(6):981 − 984. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1211.2014.06.051

  • 加载中

(3)

(4)

计量
  • 文章访问数:  598
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2020-11-03
修回日期:  2021-06-10
刊出日期:  2022-01-15

目录