黄河源区潜在蒸散量估算方法适用性分析

李云凤, 王文科, 王国庆, 刘翠善, 郑昊昌, 马稚桐. 黄河源区潜在蒸散量估算方法适用性分析[J]. 水文地质工程地质, 2021, 48(3): 10-19. doi: 10.16030/j.cnki.issn.1000-3665.202011044
引用本文: 李云凤, 王文科, 王国庆, 刘翠善, 郑昊昌, 马稚桐. 黄河源区潜在蒸散量估算方法适用性分析[J]. 水文地质工程地质, 2021, 48(3): 10-19. doi: 10.16030/j.cnki.issn.1000-3665.202011044
LI Yunfeng, WANG Wenke, WANG Guoqing, LIU Cuishan, ZHENG Haochang, MA Zhitong. The applicability of various potential evapotranspiration estimation methods in the headwater area of the Yellow River[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 10-19. doi: 10.16030/j.cnki.issn.1000-3665.202011044
Citation: LI Yunfeng, WANG Wenke, WANG Guoqing, LIU Cuishan, ZHENG Haochang, MA Zhitong. The applicability of various potential evapotranspiration estimation methods in the headwater area of the Yellow River[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 10-19. doi: 10.16030/j.cnki.issn.1000-3665.202011044

黄河源区潜在蒸散量估算方法适用性分析

  • 基金项目: 国家自然科学基金项目(U1603243;41230314)
详细信息
    作者简介: 李云凤(1994-),女,硕士研究生,主要从事水文水资源研究。E-mail: 1120672827@qq.com
    通讯作者: 王文科(1962-),男,教授,博士生导师,从事旱区地下水文与生态效应研究。E-mail: wenkew@chd.edu.cn
  • 中图分类号: P641.2

The applicability of various potential evapotranspiration estimation methods in the headwater area of the Yellow River

More Information
  • 潜在蒸散量(Potential Evapotranspiration)是区域水量平衡研究的重要参数。为在资料短缺的情况下准确计算潜在蒸散量,并科学评价其简化算法的适用性。基于黄河源区11个气象站点1970—2018年气温、降水、相对湿度、风速、日照时数等逐日观测资料,以联合国粮农组织(FAO)推荐的Penman-Monteith(PM)法为参考,从年、月及空间尺度等方面分析了Priestly-Taylor(PT)法、Doorenbos-Pruitt(DP)法、Hargreaves-Samani(HS)法、Rohwer(RO)法、Thornthwaite(TH)法、Blaney-Criddle(BC)法6种简易算法的计算精度。结果表明在黄河源区HS法与PM法的平均偏差最低,仅为3.487 mm/mon,精度最高。但HS法未考虑平均相对湿度对于潜在蒸散量估算效果的影响,在气候湿润的黄河源区东南部红原县、河南县、若尔盖县、玛曲县及久治县存在精度不高的问题。因此引入平均相对湿度因子对HS法进行修正,并评价了改进后的HS法的应用效果。结果表明,引入平均相对湿度因子修正HS法后,黄河源区整体年潜在蒸散量的平均偏差由−22.008 mm/a降至6.174 mm/a;月潜在蒸散量的平均偏差由3.487 mm/mon降至1.031 mm/mon;空间尺度上,以上5县的平均偏差明显降低,平均降幅达5.33 mm/mon。表明改进后的HS法能够有效解决黄河源区东南部精度不高的问题,可以为黄河源区潜在蒸散量的简化计算提供参考。

  • 加载中
  • 图 1  黄河源区气象站点分布

    Figure 1. 

    图 2  未经修正时各估算方法年潜在蒸散量时间序列

    Figure 2. 

    图 3  未经修正时7 种方法多年平均(1970—2018年)逐月潜在蒸散量估算值

    Figure 3. 

    图 4  各估算方法潜在蒸散量空间分布

    Figure 4. 

    图 5  改进HS法与PM法的月潜在蒸散量拟合效果

    Figure 5. 

    图 6  改进后的HS法多年平均潜在蒸散量空间分布

    Figure 6. 

    表 1  潜在蒸发量估算公式

    Table 1.  Estimation formula of potential evapotranspiration

    方法 公式 参数含义 优点 不足
    PM法[15] 为温度对饱和水汽压曲线的斜率/( );RnG分别为地表净辐射和日土壤热通量/( ); 为干湿表常数/( );T为日平均气温/ U2为2 m处风速/(m·s−1);esea分别为饱和水汽压和实际水汽压/kPa 联合国粮农组织推荐的首选方法,物理意义强,综合考虑了辐射项和风速项 需要的气象资料及模型参数多,在资料短缺的地区应用受到限制
    BC法[16] p为白天天数占全年白天天数的百分比;Ta为月平均气温/ 所需资料和参数少,计算
    简便
    计算精度较低
    TH法[17] I为年温度效率指数; 为热量指数的函数; ,其中d为月平均日照时数,N为每月天数 基于水量平衡原理提出,计算时仅需月均温度的
    数据
    计算精度受温度影响,夏季偏高
    RO法[18] 参数意义同上 基于空气动力学原理,考虑水汽压和风速的影响 未考虑辐射项影响,在辐射强烈的地区误差较大
    HS法[19] Ra为大气层外太阳辐射/( ) 需要气象资料较少,适用于干旱半干旱地区 未考虑风速、湿度的影响
    DP法[20] b为基于风速和湿度的修正系数,Rs为短波太阳辐射/( ) 需要的参数较少,计算
    简便
    未考虑蒸发潜热的影响
    PT法[21] 为蒸发潜热/( ),其余参数意义
    同上
    需要参数较少,计算简便 未考虑风速项
    下载: 导出CSV

    表 2  未经修正时各估算方法月潜在蒸散量估算效果

    Table 2.  Monthly potential evapotranspiration estimation effect of each estimation method without correction

    方法 月平均
    潜在蒸散量/
    (mm·mon−1
    平均偏差/
    (mm·mon−1
    d R2 均方根误差/
    (mm·mon−1
    PM法 59.58 / / / /
    HS法 61.41 3.49 0.98 0.93 10.59
    PT法 53.32 −6.04 0.98 0.97 9.90
    TH法 50.11 −8.75 0.87 0.76 32.48
    RO法 49.91 −9.16 0.86 0.71 21.33
    BC法 47.15 −10.69 0.92 0.80 19.85
    DP法 83.62 23.84 0.89 0.95 25.25
    下载: 导出CSV

    表 3  相关系数矩阵

    Table 3.  Correlation matrix

    气象因子 平均相对湿度 日照时数 平均气温 日最高气温 日最低气温 平均风速 净辐射
    平均相对湿度 1.000 −0.459 0.427 0.281 0.547 −0.169 0.240
    日照时数 −0.459 1.000 −0.046 0.139 −0.225 −0.052 0.378
    平均气温 0.427 −0.046 1.000 0.941 0.961 0.006 0.740
    日最高气温 0.281 0.139 0.941 1.000 0.832 −0.057 0.723
    日最低气温 0.547 −0.225 0.961 0.832 1.000 0.040 0.653
    平均风速 −0.169 −0.052 0.006 −0.057 0.040 1.000 0.036
    净辐射 0.240 0.378 0.740 0.723 0.653 0.036 1.000
      注:以上系数均通过0.001的显著性水平检验。
    下载: 导出CSV

    表 4  总方差解释

    Table 4.  Explanation of total variance

    成分 特征值 方差贡献率/% 累积方差贡献率/%
    1 3.653 52.187 52.187
    2 1.566 22.378 74.566
    3 1.046 14.939 89.505
      注:以上系数均通过0.001的显著性水平检验。
    下载: 导出CSV

    表 5  初始因子载荷阵得分

    Table 5.  Component matrix

    气象因子 第一主成分 第二主成分 第三主成分
    平均相对湿度 0.531 −0.661 −0.167
    日照时数 −0.027 0.929 −0.199
    平均气温 0.982 0.019 0.052
    日最高气温 0.922 0.203 −0.038
    日最低气温 0.954 −0.178 0.105
    平均风速 −0.026 0.106 0.981
    净辐射 0.804 0.426 −0.009
      注:以上系数均通过0.001的显著性水平检验。
    下载: 导出CSV

    表 6  改进后的HS法计算潜在蒸散量在时间尺度的估算效果

    Table 6.  Estimation effect of the potential evapotranspiration calculated by the improved HS method on the time scale

    方法 多年平均/(mm·a−1 月平均/(mm·mon−1
    PM法 714.96 59.58
    原HS法 736.97 61.41
    改进HS法 708.79 59.07
    下载: 导出CSV

    表 7  HS法改进前后月潜在蒸散量平均偏差空间分布

    Table 7.  The spatial distribution of the average error of monthly potential evapotranspiration before and after HS method improvement

    区域 行政区 平均相对湿度/% 改进前平均偏差(MBE1)/(mm·mon−1 改进后平均偏差(MBE2)/(mm·mon−1 /(mm·mon−1
    东南部 河南 63.90 5.67 1.02 −4.65
    红原 69.70 11.16 3.78 −7.38
    久治 65.40 8.62 3.25 −5.37
    若尔盖 67.40 6.46 0.10 −6.36
    玛曲 61.50 3.26 0.36 −2.9
    中部 达日 60.70 0.20 −2.87 2.67
    贵南 53.20 7.77 9.50 1.73
    玛沁 60.90 5.62 2.38 −3.24
    兴海 50.50 4.03 7.98 3.95
    西北部 玛多 56.80 −10.59 −11.42 0.83
    曲麻莱 54.10 −3.84 −2.72 −1.12
    黄河源区平均值 60.40 3.49 1.03 −2.46
      注: 代表HS法与PM法估算值偏离程度的变化。 为负表示HS改进后与PM法偏离程度变小,反之则偏离程度变大。
    下载: 导出CSV
  • [1]

    蓝永超, 鲁承阳, 喇承芳, 等. 黄河源区气候向暖湿转变的观测事实及其水文响应[J]. 冰川冻土,2013,35(4):920 − 928. [LAN Yongchao, LU Chengyang, LA Chengfang, et al. The fact of climate shift to warm-humid in the source regions of the Yellow River and its hydrologic response[J]. Journal of Glaciology and Geocryology,2013,35(4):920 − 928. (in Chinese with English abstract)

    [2]

    焦丹丹, 吉喜斌, 金博文, 等. 干旱气候条件下多种潜在蒸发量估算方法对比研究[J]. 高原气象,2018,37(4):1002 − 1016. [JIAO Dandan, JI Xibin, JIN Bowen, et al. Comparison of different methods for estimating potential evaporation in an arid environment[J]. Plateau Meteorology,2018,37(4):1002 − 1016. (in Chinese with English abstract)

    [3]

    许文豪, 王晓勇, 张俊, 等. 鄂尔多斯高原湖泊蒸发原位试验研究[J]. 水文地质工程地质,2019,46(5):16 − 23. [XU Wenhao, WANG Xiaoyong, ZHANG Jun, et al. Research on in situ test of lake evaporation in the Ordos Plateau[J]. Hydrogeology & Engineering Geology,2019,46(5):16 − 23. (in Chinese with English abstract)

    [4]

    赵玲玲, 夏军, 许崇育, 等. 水文循环模拟中蒸散发估算方法综述[J]. 地理学报,2013,68(1):127 − 136. [ZHAO Lingling, XIA Jun, XU Chongyu, et al. A review of evapotranspiration estimation methods in hydrological Models[J]. Acta Geographica Sinica,2013,68(1):127 − 136. (in Chinese with English abstract) doi: 10.11821/xb201301014

    [5]

    LU J B, SUN G, MCNULTY S G, et al. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States1[J]. Journal of the American Water Resources Association,2005,41(3):621 − 633. doi: 10.1111/j.1752-1688.2005.tb03759.x

    [6]

    李晨, 崔宁博, 冯禹, 等. 四川省不同区域参考作物蒸散量计算方法的适用性评价[J]. 农业工程学报,2016,32(4):127 − 134. [LI Chen, CUI Ningbo, FENG Yu, et al. Adaptation evaluation for reference evapotranspiration methods in different regions of Sichuan[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(4):127 − 134. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.04.018

    [7]

    刘晓英, 林而达, 刘培军. 干旱气候条件下Priestley-Taylor方法应用探讨[J]. 水利学报,2003,34(9):31 − 38. [LIU Xiaoying, LIN Erda, LIU Peijun. Study on application of Priestly-Taylor method to dry climate condition[J]. Journal of Hydraulic Engineering,2003,34(9):31 − 38. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2003.09.006

    [8]

    BORMANN H. Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations[J]. Climatic Change,2011,104(3/4):729 − 753.

    [9]

    范文波, 吴普特, 韩志全, 等. 玛纳斯河流域ET0影响因子分析及对Hargreaves法的修正[J]. 农业工程学报,2012,28(8):19 − 24. [FAN Wenbo, WU Pute, HAN Zhiquan, et al. Influencing factors analysis of reference crop evapotranspiration and modification of Hargreaves method in Manas river basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(8):19 − 24. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2012.08.003

    [10]

    贾悦, 崔宁博, 魏新平, 等. 考虑辐射改进Hargreaves模型计算川中丘陵区参考作物蒸散量[J]. 农业工程学报,2016,32(21):152 − 160. [JIA Yue, CUI Ningbo, WEI Xinping, et al. Modifying Hargreaves model considering radiation to calculate reference crop evapotranspiration in hilly area of central Sichuan Basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(21):152 − 160. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.21.020

    [11]

    陈利群, 刘昌明, 郝芳华, 等. 黄河源区基流变化及影响因子分析[J]. 冰川冻土,2006,28(2):141 − 148. [CHEN Liqun, LIU Changming, HAO Fanghua, et al. Change of the baseflow and it's impacting factors in the source regions of Yellow River[J]. Journal of Glaciology and Geocryology,2006,28(2):141 − 148. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0240.2006.02.001

    [12]

    叶红, 张廷斌, 易桂花, 等. 2000—2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报,2018,73(11):2117 − 2134. [YE Hong, ZHANG Tingbin, YI Guihua, et al. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014[J]. Acta Geographica Sinica,2018,73(11):2117 − 2134. (in Chinese with English abstract) doi: 10.11821/dlxb201811006

    [13]

    祝昌汉. 再论总辐射的气候学计算方法(二)[J]. 南京气象学院学报,1982,5(2):196 − 206. [ZHU Changhan. A further discussion on the climatological calculating method of total radiation(Ⅱ)[J]. Journal of Nanjing Institute of Meteorology,1982,5(2):196 − 206. (in Chinese with English abstract)

    [14]

    冀雅珍, 武海霞. 试论VB程序在彭曼公式中的应用[J]. 科技情报开发与经济,2011,21(5):191 − 193. [JI Yazhen, WU Haixia. Discussion on the application of VB program in penman formula[J]. Sci-Tech Information Development & Economy,2011,21(5):191 − 193. (in Chinese with English abstract)

    [15]

    ALLEN RG, PEREIRA L S, RAES D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No 56[M]. Rome: Food and Agriculture Organization of the United Nations (FAO), 1998.

    [16]

    BLANEY H F, CRIDDLE W D. Determining water requirements in irrigated areas from climatological and irrigation data[C]//US Department of Agriculture,Soil Conservation Service, 1950, 48.

    [17]

    THORNTHWAITE C W. An approach toward a rational classification of climate[J]. Geographical Review,1948,38(1):55. doi: 10.2307/210739

    [18]

    ROHWER C. Evaporation from free water surfaces[M]. Washington: US Department of Agriculture, 1931.

    [19]

    HARGREAVES G H, SAMANI Z A. Estimating potential evapotranspiration[J]. Journal of the Irrigation and Drainage Division,1982,108(3):225 − 230. doi: 10.1061/JRCEA4.0001390

    [20]

    DOORENBOS J. Crop water requirements[J]. Fao Irrigation & Drainage Paper Rome,1977,24:322 − 334.

    [21]

    PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review,1972,100(2):81 − 92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

    [22]

    XU S Q, YU Z B, YANG C G, et al. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin[J]. Agricultural and Forest Meteorology,2018,263:118 − 129. doi: 10.1016/j.agrformet.2018.08.010

    [23]

    刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报,2011,66(5):579 − 588. [LIU Changming, ZHANG Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica,2011,66(5):579 − 588. (in Chinese with English abstract) doi: 10.11821/xb201105001

    [24]

    HARGREAVES G H, ALLEN R G. History and evaluation of Hargreaves evapotranspiration equation[J]. Journal of Irrigation and Drainage Engineering,2003,129(1):53 − 63. doi: 10.1061/(ASCE)0733-9437(2003)129:1(53)

    [25]

    GAO F, FENG G, OUYANG Y, et al. Evaluation of reference evapotranspiration methods in arid, semiarid, and humid regions[J]. Journal of the American Water Resources Association,2017,53(4):791 − 808. doi: 10.1111/1752-1688.12530

    [26]

    刘勤, 严昌荣, 赵彩霞, 等. 黄河流域日潜在蒸散量变化及气象敏感要素分析[J]. 农业工程学报,2014,30(17):157 − 166. [LIU Qin, YAN Changrong, ZHAO Caixia, et al. Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(17):157 − 166. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2014.17.021

    [27]

    XU C Y, SINGH V P. Evaluation and generalization of temperature-based methods for calculating evaporation[J]. Hydrological Processes,2001,15(2):305 − 319. doi: 10.1002/hyp.119

    [28]

    黄彩霞, 赵德明, 王保福. 甘肃中东部半干旱区参考作物蒸散量多种计算方法的比较研究[J]. 干旱地区农业研究,2018,36(6):41 − 47. [HUANG Caixia, ZHAO Deming, WANG Baofu. A comparative study on calculation methods of reference crop evapotranspiration in the semi-arid region of Central Eastern Gansu[J]. Agricultural Research in the Arid Areas,2018,36(6):41 − 47. (in Chinese with English abstract) doi: 10.7606/j.issn.1000-7601.2018.06.07

  • 加载中

(6)

(7)

计量
  • 文章访问数:  1532
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2020-11-25
修回日期:  2021-01-11
刊出日期:  2021-05-15

目录