地下水埋深对淮北平原冬小麦耗水量影响试验研究

顾南, 张建云, 刘翠善, 王振龙, 王国庆. 地下水埋深对淮北平原冬小麦耗水量影响试验研究[J]. 水文地质工程地质, 2021, 48(4): 15-24. doi: 10.16030/j.cnki.issn.1000-3665.202011053
引用本文: 顾南, 张建云, 刘翠善, 王振龙, 王国庆. 地下水埋深对淮北平原冬小麦耗水量影响试验研究[J]. 水文地质工程地质, 2021, 48(4): 15-24. doi: 10.16030/j.cnki.issn.1000-3665.202011053
GU Nan, ZHANG Jianyun, LIU Cuishan, WANG Zhenlong, WANG Guoqing. An experimental study of the influence of groundwater level on water consumption of winter wheat in the Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 15-24. doi: 10.16030/j.cnki.issn.1000-3665.202011053
Citation: GU Nan, ZHANG Jianyun, LIU Cuishan, WANG Zhenlong, WANG Guoqing. An experimental study of the influence of groundwater level on water consumption of winter wheat in the Huaibei Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 15-24. doi: 10.16030/j.cnki.issn.1000-3665.202011053

地下水埋深对淮北平原冬小麦耗水量影响试验研究

  • 基金项目: 国家自然科学基金项目(41830863;41961124007)
详细信息
    作者简介: 顾南(1995-),女,博士研究生,主要从事水文水资源研究。E-mail: nanguskrskr@163.com
    通讯作者: 王国庆(1971-),男,教授级高级工程师,主要从事气候变化、水文水资源等方面的研究。E-mail: gqwang@nhri.cn
  • 中图分类号: P641.7

An experimental study of the influence of groundwater level on water consumption of winter wheat in the Huaibei Plain

More Information
  • 研究地下水埋深对淮北平原冬小麦耗水量的影响,对浅埋区农业水管理具有重要意义。基于2017—2020年五道沟水文水资源实验站大型称重式蒸渗仪群,模拟不同地下水埋深下冬小麦蒸散发变化过程,以蒸散量表征小麦耗水的变化,识别影响小麦耗水的关键环境因子,探索不同情景小麦耗水特征。全生育期内各地下水埋深0.5,1.0,2.0,3.0 m下小麦蒸散量依次为510.50,499.33,567.88,727.88 mm,各埋深下表层10 cm处土壤含水率与蒸散量相关系数依次为−0.42,−0.69,−0.53,−0.43;依据太阳辐射量划分3类典型日,典型日内蒸散强度为:强辐射日约0.30 mm/h、弱辐射日约0.07 mm/h、微弱辐射日约0.03 mm/h;蒸散峰历时依次为:5:00—20:00、7:00—17:00和9:00—17:00;太阳辐射强时,地下水埋深对蒸散强度峰值出现的时间影响较小,而太阳辐射过弱时,地下水埋深大会阻滞能量传输,蒸散强度峰值滞后;表层土壤水是蒸散发的主要来源,尤其在1.0,2.0 m埋深下表层土壤水对蒸散发贡献率更高;太阳辐射、净辐射和土壤热通量正向驱动小麦耗水,表层土壤水分、平均气温和空气湿度反向驱动。

  • 加载中
  • 图 1  蒸渗仪原理图

    Figure 1. 

    图 2  各生育阶段不同地下水埋深下冬小麦蒸散量占比雷达图

    Figure 2. 

    图 3  不同地下水埋深下全生育期冬小麦地表土壤水分变化过程

    Figure 3. 

    图 4  不同地下水埋深下冬小麦蒸散量变化过程线

    Figure 4. 

    图 5  冬小麦试验期间太阳辐射变化过程

    Figure 5. 

    图 6  典型日气象要素雷达图和小麦蒸散强度变化过程

    Figure 6. 

    表 1  不同地下水埋深下冬小麦生育阶段的划分

    Table 1.  The partition of wheat growth stages at various groundwater levels

    地下水埋深/m 初期/d 发育期/d 中期/d 后期/d 全生育期时段
    1.0 81 59 32 20 2017-11-11—2018-05-27
    3.0 81 68 34 32 2018-11-01—2019-06-03
    0.5,2.0 85 59 30 29 2019-11-01—2020-05-24
    下载: 导出CSV

    表 2  试验期间不同地下水埋深下关键气象要素变化

    Table 2.  Growthseasonal change of key meteorological elements atfour groundwater levels

    埋深/m 生育阶段 气温/℃ 空气湿度/% 太阳辐射/(W·m−2 净辐射/(W·m−2 土壤热通量/(W·m−2 大气压力/hPa 风速/(m·s−1 降水量/mm
    0.5, 2.0 初期 7.99 0.75 94.57 34.28 −48.26 1014.21 0.72 11.72
    发育期 5.66 0.86 78.63 44.70 −21.62 1011.77 1.19 68.60
    中期 14.75 0.73 194.66 118.68 32.16 1007.97 1.39 27.20
    后期 23.05 0.71 217.54 137.92 64.56 997.06 1.45 8.60
    1.0 初期 3.23 0.81 66.73 23.97 −50.41 1024.51 1.23 29.80
    发育期 7.82 0.83 128.89 51.65 10.43 1019.05 1.44 81.80
    中期 16.66 0.78 193.24 72.17 32.34 1012.37 1.31 34.60
    后期 20.61 0.90 143.90 57.71 32.89 1007.00 1.13 143.80
    3.0 初期 5.45 0.87 71.32 26.71 −48.83 1024.79 1.16 121.00
    发育期 5.86 0.78 99.97 38.70 −11.87 1020.50 1.20 63.00
    中期 14.69 0.66 146.95 62.35 33.06 1012.38 1.17 68.40
    后期 21.29 0.57 165.78 79.93 47.26 1008.14 1.00 7.40
    下载: 导出CSV

    表 3  不同地下水埋深下全生育期冬小麦蒸散量与水文气象要素相关系数

    Table 3.  Correlation coefficient between wheat evapotranspiration and hydrometeorological factors in the whole growth period at four groundwater levels

    地下水
    埋深/m
    平均气温/℃ 空气湿度/% 太阳辐射/
    (W·m−2
    净辐射/
    (W·m−2
    土壤热通量/
    (W·m−2
    大气压力/
    hPa
    风速/
    (m·s−1
    水面蒸发/mm 10 cm处
    地温/℃
    30 cm处
    地温/℃
    0.5 0.65 −0.51 0.82 0.81 0.69 −0.06 0.29 0.62 0.59 0.52
    1.0 0.64 −0.57 0.70 0.68 0.68 −0.26 −0.09 0.52 0.69 0.65
    2.0 0.73 −0.60 0.85 0.84 0.71 −0.02 0.27 0.67 0.66 0.61
    3.0 0.26 −0.28 0.52 0.56 0.42 −0.21 −0.08 0.33 0.22 0.18
    下载: 导出CSV
  • [1]

    易小波, 邵明安, 袁国富, 等. 塔里木河下游植被空间分布特征及其用水策略[J]. 北京林业大学学报,2017,39(5):1 − 8. [YI Xiaobo, SHAO Mingan, YUAN Guofu, et al. Spatial distribution of vegetation and its strategy in using water in the lower reaches of the Tarim River, western China[J]. Journal of Beijing Forestry University,2017,39(5):1 − 8. (in Chinese with English abstract)

    [2]

    赵鹏, 李思恩, 郭维华, 等. 西北干旱地区葡萄园作物耗水规律研究[J]. 灌溉排水学报,2015,34(6):68 − 72. [ZHAO Peng, LI Sien, GUO Weihua, et al. Characteristics of crop water consumption in vineyard in arid regions of northwestern China[J]. Journal of Irrigation and Drainage,2015,34(6):68 − 72. (in Chinese with English abstract)

    [3]

    DANG H Z, LU P, YANG W B, et al. Drought-induced reductions and limited recovery in the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine: a five-year observation[J]. Forests,2019,10(12):1 − 16.

    [4]

    HUANG J T, ZHOU Y X, WENNINGER J, et al. How water use of Salix psammophila bush depends on groundwater depth in a semi-desert area[J]. Environmental Earth Sciences,2016,75(7):1 − 13.

    [5]

    贾伍慧, 尹立河, 王晓勇, 等. 利用改进的Loheide方法计算地下水的蒸散发量[J]. 水文地质工程地质,2017,44(2):48 − 51. [JIA Wuhui, YIN Lihe, WANG Xiaoyong, et al. Quantifying groundwater evapotranspiration by the modified loheide method[J]. Hydrogeology & Engineering Geology,2017,44(2):48 − 51. (in Chinese with English abstract)

    [6]

    张经天, 席海洋, 王春林, 等. 基于地下水位变化的荒漠河岸林蒸散估算[J]. 高原气象,2019,38(1):179 − 186. [ZHANG Jingtian, XI Haiyang, WANG Chunlin, et al. Estimation of evapotranspiration of riparian forests in the desert region from diurnal fluctuation of groundwater levels[J]. Plateau Meteorology,2019,38(1):179 − 186. (in Chinese with English abstract)

    [7]

    黄金廷. 半干旱区蒸散发对地下水变化响应机制研究[D]. 西安: 长安大学, 2013.

    HUANG Jinting. The Response of evapotranspiration to the groundwater changes in the semi-arid area[D]. Xi’an: Chang’an University, 2013. (in Chinese with English abstract)

    [8]

    DE DEURWAERDER H, HERVÉ-FERNÁNDEZ P, STAHL C, et al. Liana and tree below-ground water competition—evidence for water resource partitioning during the dry season[J]. Tree Physiology,2018,38(7):1071 − 1083. doi: 10.1093/treephys/tpy002

    [9]

    张晓萌. 安徽淮北平原土壤水分变化特征及其与地下水转化关系研究[D]. 邯郸: 河北工程大学, 2019.

    ZHANG Xiaomeng. Variation characteristics of soil moisture variation and its relationship with groundwater transformation in Huaibei plain of Anhui Province[D]. Handan: Hebei University of Engineering, 2019. (in Chinese with English abstract)

    [10]

    LUO X Y, LIANG X, LIN J S. Plant transpiration and groundwater dynamics in water-limited climates: Impacts of hydraulic redistribution[J]. Water Resources Research,2016,52(6):4416 − 4437. doi: 10.1002/2015WR017316

    [11]

    王胜, 田红, 党修伍, 等. 安徽淮北平原冬小麦气候适宜度分析及作物年景评估[J]. 气候变化研究进展,2017,13(3):253 − 261. [WANG Sheng, TIAN Hong, DANG Xiuwu, et al. Research on the climate suitability and agricultural climate yields assessment of winter wheat in Huaibei plain of Anhui Province[J]. Climate Change Research,2017,13(3):253 − 261. (in Chinese with English abstract) doi: 10.12006/j.issn.1673-1719.2016.197

    [12]

    WANG Z, LEO M, ZHU M, et al. Comparatively study water sensitivity index of the winter wheat for different groundwater depth in Shajiang black soil area and yellow fluvo-acquic soil area[J]. IOP Conference Series: Earth and Environmental Science,2020,525(1):1 − 11.

    [13]

    王振龙, 杨秒, 吕海深, 等. 基于蒸渗仪群淮北平原冻融期裸土及麦田潜水蒸发规律研究[J]. 农业工程学报,2019,35(13):129 − 137. [WANG Zhenlong, YANG Miao, LYU Haishen, et al. Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(13):129 − 137. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.13.014

    [14]

    耿思敏. 面向作物因旱产量损失最小化的农业水资源配置研究[D]. 北京: 清华大学, 2017.

    GENG Simin. Study on the allocation of agricultural water resources oriented the minimization of crop yield loss caused by drought[D]. Beijing: Tsinghua University, 2017. (in Chinese with English abstract)

    [15]

    CUI Y, JIANG S M, JIN J L, et al. Decision-making of irrigation scheme for soybeans in the Huaibei plain based on grey entropy weight and grey relation–projection pursuit[J]. Entropy,2019,21(9):877. doi: 10.3390/e21090877

    [16]

    王振龙, 顾南, 吕海深, 等. 基于温度效应的作物系数及蒸散量计算方法[J]. 水利学报,2019,50(2):242 − 251. [WANG Zhenlong, GU Nan, LYU Haishen, et al. Calculation of crop coefficient and evapotranspiration based on temperature effect[J]. Journal of Hydraulic Engineering,2019,50(2):242 − 251. (in Chinese with English abstract)

    [17]

    ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop water requirement[R]. Rome: Food and Agriculture Organization of the United Nations, Irrigation and Drainage Paper, 1998.

    [18]

    张建萍, 刘希玉. 基于聚类分析的K-means算法研究及应用[J]. 计算机应用研究,2007,24(5):166 − 168. [ZHANG Jianping, LIU Xiyu. Application in cluster's analysis is analyzed in children development period[J]. Application Research of Computers,2007,24(5):166 − 168. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3695.2007.05.051

    [19]

    王振龙, 刘淼, 李瑞. 淮北平原有无作物生长条件下潜水蒸发规律试验[J]. 农业工程学报,2009,25(6):26 − 32. [WANG Zhenlong, LIU Miao, LI Rui. Experiment on phreatic evaporation of bare soil and soil with crop in Huaibei plain[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(6):26 − 32. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2009.06.005

    [20]

    RICHARD A, GALLE S, DESCLOITRES M, et al. Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)[J]. Hydrology and Earth System Sciences,2013,17(12):5079 − 5096. doi: 10.5194/hess-17-5079-2013

    [21]

    赵楠, 王尚涛, 朱高峰, 等. 额济纳旗柽柳林土壤水分动态变化特征研究[J]. 干旱区资源与环境,2020,34(5):189 − 195. [ZHAO Nan, WANG Shangtao, ZHU Gaofeng, et al. Study on soil moisture dynamics of Tamarix shrubs in Ejina Banner[J]. Journal of Arid Land Resources and Environment,2020,34(5):189 − 195. (in Chinese with English abstract)

    [22]

    王晶晶. 土壤作物系统中水分及其氢氧稳定同位素的动态与农田耗水特征[D]. 北京: 中国农业大学, 2015.

    WANG Jingjing. Dynamics of soil water and deuterium and oxygen-18Stable isotopes in soil-crop system and field water consumption characteristics[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

    [23]

    王胜. 水蚀风蚀交错区典型乔灌树种蒸腾耗水特征研究[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2019.

    WANG Sheng. Transpiration characteristics of typical shrub and tree species in the water-wind erosion crisscross region, China[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese with English abstract)

    [24]

    MCDONALD A K, WILCOX B P, MOORE G W, et al. Tamarix transpiration along a semiarid river has negligible impact on water resources[J]. Water Resources Research,2015,51(7):5117 − 5127. doi: 10.1002/2014WR016866

    [25]

    刘思敏. 安徽淮北平原暴雨事件演变规律及作物雨涝风险分析[D]. 北京: 北京林业大学, 2017.

    LIU Simin. Evolvement of rainstorm event and risk analysis of crop waterlogging in Huaibei plain of Anhui Province[D]. Beijing: Beijing Forestry University, 2017. (in Chinese with English abstract)

    [26]

    郭晓彤, 孟丹, 蒋博武, 等. 基于MODIS蒸散量数据的淮河流域蒸散发时空变化及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 45-52.

    GUO Xiaotong, MENG Dan, JIANG Bowu, et al. Spatio-temporal change and influencing factors of evapotranspiration in the Huaihe River Basin based on MODIS evapotranspiration data[J]. Hydrogeology & Engineering Geology, 2021, 48(3):45-52.(in Chinese with English abstract)

    [27]

    黄金廷, 李宗泽, 王文科, 等. 格尔木河流域水面蒸发特征及影响因素分析[J]. 水文地质工程地质, 2021 , 48(3): 31-37.

    HUANG Jinting, LI Zongze, WANG Wenke, et al. Characteristics of evaporation and its effect factors in the Golmud River catchment [J]. Hydrogeology & Engineering Geology, 2021, 48 (3): 31-37. (in Chinese with English abstract)

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1184
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2020-11-15
修回日期:  2021-04-13
刊出日期:  2021-07-15

目录