Estimation of groundwater evaporation based on lysimeter experiment and analytical solution in the Mu Us sandy land
-
摘要:
地下水蒸发是旱区地下水均衡计算中重要的排泄项之一。由于包气带水分运移高度非线性且大气—地表界面动力学过程复杂,估算潜水蒸发量一直是地下水资源评价的难题之一。利用内蒙古乌审旗河南乡均衡试验场E601型蒸渗仪,建立了毛乌素沙地水面蒸发及4种典型岩性(风化砂岩K1、萨拉乌苏组砂Qpal+l、砂质壤土Qhl、风积沙Qheol)的饱和土蒸发原位试验,结合长期观测获取的大量数据,开展了地下水蒸发与水面蒸发、埋深的关系和地下水蒸发量计算方法研究。结果表明:(1)4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)饱和蒸发量与水面蒸发量比值分别为0.60,0.77,0.47,0.88,表明不同岩性的饱和裸土的蒸发强度不等于自由水面的蒸发强度;实际计算裸土蒸发强度时,不能以自由水面蒸发强度作为参考点,如果运用,必须校正。(2)利用蒸渗仪观测数据和土壤水运动方程稳态解析解,获得4种典型岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水稳定蒸发计算的关键经验系数c,分别为628932.63,165058.71,48948.21,1525104.031 m−2。(3)利用稳定蒸发公式确定鄂尔多斯盆地风沙滩区四种典型包气带岩性(风化砂岩、萨拉乌苏组砂、砂质壤土、风积沙)潜水极限蒸发深度约为60 cm,结果得到了室内非稳态蒸发试验的佐证,为研究区水资源评价提供了重要的参数依据。
Abstract:Groundwater evaporation is one of the important discharge item in the calculation of water balance in arid areas. Due to the highly non-linear soil water transport in the vadose zone and the complexity of water dynamic at the atmospheric-surface interface, estimation of groundwater evaporation has been the difficult issue of groundwater resources evaluation. In this study, the E601 type lysimeter was used in the Henan Township equilibrium test site in Wushen County of Inner Mongolia, and the in-situ experiment on surface water evaporation and groundwater evaporation for four typical vadose zone lithologies (sandstone K1, Salawusu sand Qpal+l, sandy loam Qhl, and aeolian sand Qheol) were established in the Mu Us sandy land. Combined with the long-term field observation data, the relationship among surface water and groundwater evaporation, groundwater evaporation and extinction depth were examined, and the estimation approach of groundwater evaporation was investigated. The results show that (1) the ratios of saturated evaporation to surface water evaporation are 0.60, 0.77, 0.47 and 0.88 for four typical vadose zone lithologis (sandstone, Salawusu sand, sandy loam, and aeolian sand), respectively, indicating that the surface water evaporation value cannot be used to estimate groundwater evaporation, if used, the surface water evaporation value must be corrected. (2) Based on the observation data of lysimeter and the steady-state analytical solution of soil water movement equation, the key empirical coefficients c of four typical vadose zone lithologies (sandstone, Salawusu formation sand sand, sandy loam, aeolian sand) are Obtained, which are 628932.63, 165058.71, 48948.21 and 1525104.031 m−2, respectively. (3) According to the stable evaporation formula, the groundwater extinction depth of four typical vadose zone lithologies (sandstone, Salawusu sand, sandy loam, and aeolian sand) is about 60 cm in the Ordos Basin. The results are verified by unsteady evaporation experiment in the laboratory, which may provide important parameter basis for water resources assessment in the study area.
-
Key words:
- evaporation /
- groundwater /
- lysimeter /
- analytical solution /
- Mu Us sandy land
-
-
表 1 不同介质的蒸发量
Table 1. Evaporation for different media
日期 蒸发量/mm 风化砂岩 萨拉乌苏组砂 砂质壤土 风积沙 淡水 9日20:00—10日20:00 2.3 3.2 1.8 3.5 3.9 10日20:00—11日20:00 2.1 2.7 1.8 3.1 3.7 11日20:00— 12日20:00 2.2 2.6 1.6 3.1 3.4 表 2 经验系数c平均值
Table 2. values of unkown c
风化砂岩 萨拉乌苏组砂 砂质壤土 风积沙 Ks/(m·d−1) 1.40 0.47 0.0857 4.98 c/m−2 628932.63 165058.71 48948.21 1525104.03 -
[1] BANIMAHD S A, ZAND-PARSA S. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium[J]. Agricultural Water Management,2013,130:168 − 177. doi: 10.1016/j.agwat.2013.08.022
[2] KATATA G, NAGAI H, UEDA H, et al. Development of a land surface model including evaporation and adsorption processes in the soil for the land air exchange in arid regions[J]. Journal of Hydrometeorology,2007,8(6):1307 − 1324. doi: 10.1175/2007JHM829.1
[3] 席丹, 王文科, 赵明, 等. 玛纳斯河流域山前平原区蒸散发时空异质性分析[J]. 水文地质工程地质,2020,47(2):25 − 34. [XI Dan, WANG Wenke, ZHAO Ming, et al. Analyses of the spatio-temporal heterogeneity of evapotranspiration in the piedmont of the Manas River Basin[J]. Hydrogeology & Engineering Geology,2020,47(2):25 − 34. (in Chinese with English abstract)
[4] TRENBERTH K E, FASULLO J T, KIEHL J. Earth's global energy budget[J]. Bulletin of the American Meteorological Society,2009,90(3):311 − 324. doi: 10.1175/2008BAMS2634.1
[5] 霍世璐, 王文科, 段磊, 等. 霍城县地下水资源构成变化及驱动力分析[J]. 水文地质工程地质,2020,47(2):51 − 59. [HUO Shilu, WANG Wenke, DUAN Lei, et al. An analysis of groundwater resources composition and driving force in Huocheng County[J]. Hydrogeology & Engineering Geology,2020,47(2):51 − 59. (in Chinese with English abstract)
[6] 阴小伟, 吴一平, 赵文智, 等. 西北旱区潜在蒸散发的气候敏感性及其干旱特征研究[J]. 水文地质工程地质,2021,48(3):107 − 110. [YIN Xiaowei, WU Yiping, ZHAO Wenzhi, et al. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China[J]. Hydrogeology & Engineering Geology,2021,48(3):107 − 110. (in Chinese with English abstract)
[7] LAUTZ L K. Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone[J]. Hydrogeology Journal,2008,16(3):483 − 497. doi: 10.1007/s10040-007-0239-0
[8] ZHANG C M, LI L, LOCKINGTON D. Numerical study of evaporation-induced salt accumulation and precipitation in bare saline soils: Mechanism and feedback[J]. Water Resources Research,2014,50(10):8084 − 8106. doi: 10.1002/2013WR015127
[9] ZHANG C M, LI L, LOCKINGTON D. A physically based surface resistance model for evaporation from bare soils[J]. Water Resources Research,2015,51(2):1084 − 1111. doi: 10.1002/2014WR015490
[10] 王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2018.07.0702
[11] WANG W K, ZHANG Z Y, YEH T C J, et al. Flow dynamics in vadose zones with and without vegetation in an arid region[J]. Advances in Water Resources,2017,106:68 − 79. doi: 10.1016/j.advwatres.2017.03.011
[12] ZHANG Z Y, WANG W K, WANG Z F, et al. Evaporation from bare ground with different water-table depths based on an in situ experiment in Ordos Plateau, China[J]. Hydrogeology Journal,2018,26(5):1683 − 1691. doi: 10.1007/s10040-018-1751-0
[13] WANG W K, DUAN L, YANG X T, et al. Shallow groundwater hydro-chemical evolution and simulation with special focus on Guanzhong basin, China[J]. Environmental Engineering and Management Journal,2013,12(7):1447 − 1455. doi: 10.30638/eemj.2013.178
[14] 朱学愚, 谢春红. 地下水运移模型[M]. 北京: 中国建筑工业出版社, 1990.
ZHU Xueyu, XIE Chunhong. Groundwater transport model[M]. Beijing: China Construction Industry Press, 1990. (in Chinese)
[15] 中国地质调查局. 水文地质手册[M]. 2版. 北京: 地质出版社, 2012.
China Geological Survey. Handbook of hydrogeology[M]. 2nd ed. Beijing: Geological Publishing House, 2012. (in Chinese)
-