An experimental study of reinforcement of the Wenzhou sludge based on the consolidation and solidification composite technology
-
摘要:
为了对软弱淤泥土进行加固,使之满足工程建设所需的一定承载力,在试验基地采用固结-固化复合技术对淤泥进行加固研究。试验时,将一定厚度淤泥分为浅层固化加固层和深层固结加固层;浅层(≤1 m)淤泥采用固化技术进行加固,使之形成高强度硬壳层;对于深层(>1 m)淤泥,采用真空预压技术进行加固,以提高深层淤泥的承载力并控制加固土体的后期沉降量。试验结果表明,当固化剂掺量为0.6%~5.0%时,浅层固化淤泥承载力特征值在109~330 kPa;固结-固化复合技术对土体加固效果突出,分层加固土体整体的承载力特征值在89~230 kPa;浅层淤泥经过固化处理后,土体强度较高,对地表荷载起到了明显的扩散作用,有效地减小了地表荷载在下卧层土体中产生的附加应力;多数试验单元浅层固化土的应力扩散角在19.474°~26.303°之间。
Abstract:In order to reinforce the soft sludge and makes it meet the certain bearing capacity of the engineering construction, the consolidation and solidification composite technology is used to reinforce the sludge in the field site. During the test, a certain thickness of sludge is divided into a shallow solidification layer and a deep consolidation layer. The solidification technology is used to reinforce the shallow (≤1 m) sludge so as to form a high-strength overlying crust. For the deep (>1 m) sludge, the vacuum preloading technology is used to improve the bearing capacity of the deep sludge and control the later settlement of the reinforced soil. The experimental results show that the characteristic value of the shallow solidified soil bearing capacity ranges from 109 to 330 kPa when the dosage of solidified agent is 0.6%~5.0%. The consolidation and solidification composite technology has a prominent effect on the reinforcement of the sludge and the characteristic value of the overall bearing capacity of the layered reinforced soil varies between 89 and 230 kPa. After the solidification treatment of the shallow sludge, the soil strength is higher, which can generate an obvious diffusion effect on the surface load and effectively reduces the additional stress in the underlying layer caused by the surface load. The stress diffusion angle of shallow solidified soil in most test units varies between 19.474° and 26.303° in this experiment.
-
-
表 1 淤泥的基本物理指标
Table 1. Basic physical properties of sludge
含水率
/%黏粒含量
/%液限
/%塑限
/%有机质含量
/%孔隙比 相对密度 66.3 49.4 52.5 27.5 3.4 1.821 2.67 表 2 固化剂的化学成分及粒径范围
Table 2. Chemical compositions and particle size range of the solidified agent
化学成分/% 粒径分布/% CaO MgO CO2 SO3 ≤100μm ≤200μm ≤2mm 85.21 2.11 0.31 0.04 70.21 88.62 100 表 3 各试验单元固化剂掺入比
Table 3. Mixing ratio of the curing agent in each test unit
编号 GH-1 GH-2 GH-3 GH-4 GH-5 GH-6 固化剂掺量/% 0.0 0.6 1.0 2.0 3.0 5.0 表 4 土体的平板荷载试验数据汇总(0.707 m×0.707 m)
Table 4. Summary of the plate loading test data of soil
区域 固化剂
掺量/%加载时土体
极限荷载/kPa土体极限
荷载/kPa土体承载力
特征值/kPa破坏形式 GH-1 0.0 80 80 40 冲剪破坏 GH-2 0.6 180 178 89 冲剪破坏 GH-3 1.0 320 320 133 冲剪破坏 GH-4 2.0 360 360 168 冲剪破坏 GH-5 3.0 380 380 190 冲剪破坏 GH-6 5.0 460 460 230 冲剪破坏 表 5 双层地基模型数据汇总
Table 5. Data summary of the double-layer foundation model
区域 固化剂
掺量/%第一层土体
变形模量E 01/MPa第二层土体
变形模量E02/MPa模量
比扩散角
θ/(°)GH-1 0.0 4.0 4.0 1.0 / GH-2 0.6 8.0 4.0 2.0 10.027 GH-3 1.0 9.2 4.0 2.3 19.474 GH-4 2.0 11.3 4.0 2.8 21.628 GH-5 3.0 20.6 4.0 5.2 22.638 GH-6 5.0 34.4 4.0 8.6 26.303 -
[1] 王臻华, 项伟, 吴雪婷, 等. 碱性氧化剂对水泥固化淤泥强度的影响研究[J]. 岩土工程学报,2019,41(4):693 − 699. [WANG Zhenhua, XIANG Wei, WU Xueting, et al. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):693 − 699. (in Chinese with English abstract)
[2] 谈云志, 柯睿, 陈君廉, 等. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学,2020,41(4):1146 − 1152. [TAN Yunzhi, KE Rui, CHEN Junlian, et al. Enhancing durability of lime-cement solidified sludge with metakaolin[J]. Rock and Soil Mechanics,2020,41(4):1146 − 1152. (in Chinese with English abstract)
[3] 董辉, 程子华, 刘禹岐, 等. 生物酶改良淤泥质土的时效强度试验研究[J]. 水文地质工程地质,2020,47(2):84 − 94. [DONG Hui, CHENG Zihua, LIU Yuqi, et al. Experimental study of aging strength of the mucky soils improved with bio-enzyme[J]. Hydrogeology & Engineering Geology,2020,47(2):84 − 94. (in Chinese with English abstract)
[4] 应舒, 高长胜, 黄家青. 新吹填淤泥地基浅层处理试验研究[J]. 岩土工程学报,2010,32(12):1956 − 1960. [YING Shu, GAO Changsheng, HUANG Jiaqing. Experimental study on surface-layer improvement of soft foundation filled by newly dreged silt[J]. Chinese Journal of Geotechnical Engineering,2010,32(12):1956 − 1960. (in Chinese with English abstract)
[5] 刘景锦, 雷华阳, 卢海滨, 等. 真空预压法淤堵泥层形成机理及预测模型研究[J]. 水文地质工程地质,2017,44(3):61 − 71. [LIU Jingjin, LEI Huayang, LU Haibin, et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology,2017,44(3):61 − 71. (in Chinese with English abstract)
[6] 龚敦红, 陈志芳, 祝湛毅, 等. 浅层动力固结在温州某软土路基中的试验研究[J]. 水文地质工程地质,2007,34(3):82 − 84. [GONG Dunhong, CHEN Zhifang, ZHU Zhanyi, et al. Experimental study of shallow dynamic consolidation in a soft soil subgrade in Wenzhou[J]. Hydrogeology & Engineering Geology,2007,34(3):82 − 84. (in Chinese) doi: 10.3969/j.issn.1000-3665.2007.03.021
[7] CAI Y Q, XIE Z W, WANG J, et al. New approach of vacuum preloading with booster prefabricated vertical drains (PVDs) to improve deep marine clay strata[J]. Canadian Geotechnical Journal,2018,55(10):1359 − 1371. doi: 10.1139/cgj-2017-0412
[8] 杨国强, 李宝详. 真空加堆载预压法的大面积应用[J]. 岩土工程师,1991,3(4):43 − 49. [YANG Guoqiang, LI Baoxiang. Application of vacuum-surcharge preloading method for soft ground treatment[J]. Geotechnical Engineer,1991,3(4):43 − 49. (in Chinese)
[9] 鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报,2014,36(7):1350 − 1359. [BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1350 − 1359. (in Chinese with English abstract) doi: 10.11779/CJGE201407020
[10] 黄鹏华, 王柳江, 刘斯宏, 等. 真空堆载预压联合电渗竖向排水地基非线性固结解析解[J]. 岩石力学与工程学报,2021,40(1):206 − 216. [HUANG Penghua, WANG Liujiang, LIU Sihong, et al. Nonlinear analytical solutions for vertical drainage consolidation of foundations under vacuum-surcharge preloading combined with electroosmosis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):206 − 216. (in Chinese with English abstract)
[11] 占宏, 李晗峰, 翁振奇. 石灰对真空预压加固高含水率淤泥效果影响试验研究[J]. 地基处理,2020,2(3):192 − 195. [ZHAN Hong, LI Hanfeng, WENG Zhenqi. Experimental study on the effect of lime treatment on vacuum preloading to strengthen high water content muck[J]. Chinese Journal of Ground Improvement,2020,2(3):192 − 195. (in Chinese with English abstract)
[12] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 等. 絮凝-水平真空两段式脱水法处理高含水率疏浚淤泥模型试验研究[J]. 岩土力学,2020,41(5):1502 − 1509. [PU Hefu, PAN Youfu, DIBANGAR K, et al. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method[J]. Rock and Soil Mechanics,2020,41(5):1502 − 1509. (in Chinese with English abstract)
[13] 杨爱武, 肖敏, 周玉明. 石灰粉煤灰固化天津滨海软土试验研究[J]. 地下空间与工程学报,2019,15(1):60 − 67. [YANG Aiwu, XIAO Min, ZHOU Yuming. Experimental study on lime-fly ash to cure Tianjin marine soft soil[J]. Chinese Journal of Underground Space and Engineering,2019,15(1):60 − 67. (in Chinese with English abstract)
[14] 饶春义, 朱剑锋, 庹秋水, 等. 镁质水泥固化淤泥一维压缩特性研究[J]. 水文地质工程地质,2018,45(4):94 − 99. [RAO Chunyi, ZHU Jianfeng, TUO Qiushui, et al. A study of the 1D compression characteristics of magnesia cement silt[J]. Hydrogeology & Engineering Geology,2018,45(4):94 − 99. (in Chinese with English abstract)
[15] 刘松玉, 周建, 章定文, 等. 地基处理技术进展[J]. 土木工程学报,2020,53(4):93 − 110. [LIU Songyu, ZHOU Jian, ZHANG Dingwen, et al. State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal,2020,53(4):93 − 110. (in Chinese with English abstract)
[16] 邓永锋, 赵余, 刘倩雯, 等. 钢渣的硅系与复合系激发及其在软土固化中的应用[J]. 中国公路学报,2018,31(11):11 − 20. [DENG Yongfeng, ZHAO Yu, LIU Qianwen, et al. Na2SiO4-and cement-based activation on steel slag and its application in soft-soil stabilization[J]. China Journal of Highway and Transport,2018,31(11):11 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2018.11.002
[17] 刘松玉, 郑旭, 蔡光华, 等. 活性MgO碳化固化土的抗硫酸盐侵蚀性研究[J]. 岩土力学,2016,37(11):3057 − 3064. [LIU Songyu, ZHENG Xu, CAI Guanghua, et al. Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils[J]. Rock and Soil Mechanics,2016,37(11):3057 − 3064. (in Chinese with English abstract)
[18] 刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报,2015,37(1):148 − 155. [LIU Songyu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering,2015,37(1):148 − 155. (in Chinese with English abstract) doi: 10.11779/CJGE201501018
[19] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
[Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[20] 中华人民共和国住房和城乡建设部. 建筑地基检测技术规范: JGJ 340—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for testing of building foundation soils: JGJ 340—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
[21] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of building foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)
-