基于固结-固化复合技术对温州淤泥加固的试验研究

袁波, 邵吉成, 骆嘉成, 叶宏峰. 基于固结-固化复合技术对温州淤泥加固的试验研究[J]. 水文地质工程地质, 2022, 49(1): 66-74. doi: 10.16030/j.cnki.issn.1000-3665.202103035
引用本文: 袁波, 邵吉成, 骆嘉成, 叶宏峰. 基于固结-固化复合技术对温州淤泥加固的试验研究[J]. 水文地质工程地质, 2022, 49(1): 66-74. doi: 10.16030/j.cnki.issn.1000-3665.202103035
YUAN Bo, SHAO Jicheng, LUO Jiacheng, YE Hongfeng. An experimental study of reinforcement of the Wenzhou sludge based on the consolidation and solidification composite technology[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 66-74. doi: 10.16030/j.cnki.issn.1000-3665.202103035
Citation: YUAN Bo, SHAO Jicheng, LUO Jiacheng, YE Hongfeng. An experimental study of reinforcement of the Wenzhou sludge based on the consolidation and solidification composite technology[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 66-74. doi: 10.16030/j.cnki.issn.1000-3665.202103035

基于固结-固化复合技术对温州淤泥加固的试验研究

  • 基金项目: 温州市基础性科研项目(S2020024)
详细信息
    作者简介: 袁波(1970-),男,高级工程师,主要从事地质勘查及管理工作。E-mail:dzyb2851@126.com
    通讯作者: 邵吉成(1992-),男,硕士,主要从事软基处理、环境岩土工程等领域的研究和应用。E-mail: shaojicheng2021@126.com
  • 中图分类号: TU472.5

An experimental study of reinforcement of the Wenzhou sludge based on the consolidation and solidification composite technology

More Information
  • 为了对软弱淤泥土进行加固,使之满足工程建设所需的一定承载力,在试验基地采用固结-固化复合技术对淤泥进行加固研究。试验时,将一定厚度淤泥分为浅层固化加固层和深层固结加固层;浅层(≤1 m)淤泥采用固化技术进行加固,使之形成高强度硬壳层;对于深层(>1 m)淤泥,采用真空预压技术进行加固,以提高深层淤泥的承载力并控制加固土体的后期沉降量。试验结果表明,当固化剂掺量为0.6%~5.0%时,浅层固化淤泥承载力特征值在109~330 kPa;固结-固化复合技术对土体加固效果突出,分层加固土体整体的承载力特征值在89~230 kPa;浅层淤泥经过固化处理后,土体强度较高,对地表荷载起到了明显的扩散作用,有效地减小了地表荷载在下卧层土体中产生的附加应力;多数试验单元浅层固化土的应力扩散角在19.474°~26.303°之间。

  • 加载中
  • 图 1  淤泥沿竖向的加固示意图

    Figure 1. 

    图 2  沉降监测点

    Figure 2. 

    图 3  各试验单元土体沉降量监测结果

    Figure 3. 

    图 4  静力触探试验结果

    Figure 4. 

    图 5  浅层1 m固化土比贯入阻力平均值

    Figure 5. 

    图 6  浅层固化土平板荷载试验结果

    Figure 6. 

    图 7  浅层固化土体变形模量

    Figure 7. 

    图 8  分层加固土体平板试验结果

    Figure 8. 

    图 9  应力扩散角计算简图

    Figure 9. 

    图 10  变形模量之比与应力扩散角的关系

    Figure 10. 

    图 11  加固淤泥开挖效果

    Figure 11. 

    表 1  淤泥的基本物理指标

    Table 1.  Basic physical properties of sludge

    含水率
    /%
    黏粒含量
    /%
    液限
    /%
    塑限
    /%
    有机质含量
    /%
    孔隙比相对密度
    66.349.452.527.53.41.8212.67
    下载: 导出CSV

    表 2  固化剂的化学成分及粒径范围

    Table 2.  Chemical compositions and particle size range of the solidified agent

    化学成分/%粒径分布/%
    CaOMgOCO2SO3 ≤100μm≤200μm≤2mm
    85.212.110.310.04 70.2188.62100
    下载: 导出CSV

    表 3  各试验单元固化剂掺入比

    Table 3.  Mixing ratio of the curing agent in each test unit

    编号GH-1GH-2GH-3GH-4GH-5GH-6
    固化剂掺量/%0.00.61.02.03.05.0
    下载: 导出CSV

    表 4  土体的平板荷载试验数据汇总(0.707 m×0.707 m)

    Table 4.  Summary of the plate loading test data of soil

    区域固化剂
    掺量/%
    加载时土体
    极限荷载/kPa
    土体极限
    荷载/kPa
    土体承载力
    特征值/kPa
    破坏形式
    GH-10.0808040冲剪破坏
    GH-20.618017889冲剪破坏
    GH-31.0320320133冲剪破坏
    GH-42.0360360168冲剪破坏
    GH-53.0380380190冲剪破坏
    GH-65.0460460230冲剪破坏
    下载: 导出CSV

    表 5  双层地基模型数据汇总

    Table 5.  Data summary of the double-layer foundation model

    区域固化剂
    掺量/%
    第一层土体
    变形模量E 01/MPa
    第二层土体
    变形模量E02/MPa
    模量
    扩散角
    θ/(°)
    GH-10.04.04.01.0/
    GH-20.68.04.02.010.027
    GH-31.09.24.02.319.474
    GH-42.011.34.02.821.628
    GH-53.020.64.05.222.638
    GH-65.034.44.08.626.303
    下载: 导出CSV
  • [1]

    王臻华, 项伟, 吴雪婷, 等. 碱性氧化剂对水泥固化淤泥强度的影响研究[J]. 岩土工程学报,2019,41(4):693 − 699. [WANG Zhenhua, XIANG Wei, WU Xueting, et al. Influences of alkaline oxidant on strength of cement-stabilized sludge[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):693 − 699. (in Chinese with English abstract)

    [2]

    谈云志, 柯睿, 陈君廉, 等. 偏高岭土增强石灰-水泥固化淤泥的耐久性研究[J]. 岩土力学,2020,41(4):1146 − 1152. [TAN Yunzhi, KE Rui, CHEN Junlian, et al. Enhancing durability of lime-cement solidified sludge with metakaolin[J]. Rock and Soil Mechanics,2020,41(4):1146 − 1152. (in Chinese with English abstract)

    [3]

    董辉, 程子华, 刘禹岐, 等. 生物酶改良淤泥质土的时效强度试验研究[J]. 水文地质工程地质,2020,47(2):84 − 94. [DONG Hui, CHENG Zihua, LIU Yuqi, et al. Experimental study of aging strength of the mucky soils improved with bio-enzyme[J]. Hydrogeology & Engineering Geology,2020,47(2):84 − 94. (in Chinese with English abstract)

    [4]

    应舒, 高长胜, 黄家青. 新吹填淤泥地基浅层处理试验研究[J]. 岩土工程学报,2010,32(12):1956 − 1960. [YING Shu, GAO Changsheng, HUANG Jiaqing. Experimental study on surface-layer improvement of soft foundation filled by newly dreged silt[J]. Chinese Journal of Geotechnical Engineering,2010,32(12):1956 − 1960. (in Chinese with English abstract)

    [5]

    刘景锦, 雷华阳, 卢海滨, 等. 真空预压法淤堵泥层形成机理及预测模型研究[J]. 水文地质工程地质,2017,44(3):61 − 71. [LIU Jingjin, LEI Huayang, LU Haibin, et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology,2017,44(3):61 − 71. (in Chinese with English abstract)

    [6]

    龚敦红, 陈志芳, 祝湛毅, 等. 浅层动力固结在温州某软土路基中的试验研究[J]. 水文地质工程地质,2007,34(3):82 − 84. [GONG Dunhong, CHEN Zhifang, ZHU Zhanyi, et al. Experimental study of shallow dynamic consolidation in a soft soil subgrade in Wenzhou[J]. Hydrogeology & Engineering Geology,2007,34(3):82 − 84. (in Chinese) doi: 10.3969/j.issn.1000-3665.2007.03.021

    [7]

    CAI Y Q, XIE Z W, WANG J, et al. New approach of vacuum preloading with booster prefabricated vertical drains (PVDs) to improve deep marine clay strata[J]. Canadian Geotechnical Journal,2018,55(10):1359 − 1371. doi: 10.1139/cgj-2017-0412

    [8]

    杨国强, 李宝详. 真空加堆载预压法的大面积应用[J]. 岩土工程师,1991,3(4):43 − 49. [YANG Guoqiang, LI Baoxiang. Application of vacuum-surcharge preloading method for soft ground treatment[J]. Geotechnical Engineer,1991,3(4):43 − 49. (in Chinese)

    [9]

    鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报,2014,36(7):1350 − 1359. [BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering,2014,36(7):1350 − 1359. (in Chinese with English abstract) doi: 10.11779/CJGE201407020

    [10]

    黄鹏华, 王柳江, 刘斯宏, 等. 真空堆载预压联合电渗竖向排水地基非线性固结解析解[J]. 岩石力学与工程学报,2021,40(1):206 − 216. [HUANG Penghua, WANG Liujiang, LIU Sihong, et al. Nonlinear analytical solutions for vertical drainage consolidation of foundations under vacuum-surcharge preloading combined with electroosmosis[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):206 − 216. (in Chinese with English abstract)

    [11]

    占宏, 李晗峰, 翁振奇. 石灰对真空预压加固高含水率淤泥效果影响试验研究[J]. 地基处理,2020,2(3):192 − 195. [ZHAN Hong, LI Hanfeng, WENG Zhenqi. Experimental study on the effect of lime treatment on vacuum preloading to strengthen high water content muck[J]. Chinese Journal of Ground Improvement,2020,2(3):192 − 195. (in Chinese with English abstract)

    [12]

    蒲诃夫, 潘友富, KHOTEJA Dibangar, 等. 絮凝-水平真空两段式脱水法处理高含水率疏浚淤泥模型试验研究[J]. 岩土力学,2020,41(5):1502 − 1509. [PU Hefu, PAN Youfu, DIBANGAR K, et al. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method[J]. Rock and Soil Mechanics,2020,41(5):1502 − 1509. (in Chinese with English abstract)

    [13]

    杨爱武, 肖敏, 周玉明. 石灰粉煤灰固化天津滨海软土试验研究[J]. 地下空间与工程学报,2019,15(1):60 − 67. [YANG Aiwu, XIAO Min, ZHOU Yuming. Experimental study on lime-fly ash to cure Tianjin marine soft soil[J]. Chinese Journal of Underground Space and Engineering,2019,15(1):60 − 67. (in Chinese with English abstract)

    [14]

    饶春义, 朱剑锋, 庹秋水, 等. 镁质水泥固化淤泥一维压缩特性研究[J]. 水文地质工程地质,2018,45(4):94 − 99. [RAO Chunyi, ZHU Jianfeng, TUO Qiushui, et al. A study of the 1D compression characteristics of magnesia cement silt[J]. Hydrogeology & Engineering Geology,2018,45(4):94 − 99. (in Chinese with English abstract)

    [15]

    刘松玉, 周建, 章定文, 等. 地基处理技术进展[J]. 土木工程学报,2020,53(4):93 − 110. [LIU Songyu, ZHOU Jian, ZHANG Dingwen, et al. State of the art of the ground improvement technology in China[J]. China Civil Engineering Journal,2020,53(4):93 − 110. (in Chinese with English abstract)

    [16]

    邓永锋, 赵余, 刘倩雯, 等. 钢渣的硅系与复合系激发及其在软土固化中的应用[J]. 中国公路学报,2018,31(11):11 − 20. [DENG Yongfeng, ZHAO Yu, LIU Qianwen, et al. Na2SiO4-and cement-based activation on steel slag and its application in soft-soil stabilization[J]. China Journal of Highway and Transport,2018,31(11):11 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2018.11.002

    [17]

    刘松玉, 郑旭, 蔡光华, 等. 活性MgO碳化固化土的抗硫酸盐侵蚀性研究[J]. 岩土力学,2016,37(11):3057 − 3064. [LIU Songyu, ZHENG Xu, CAI Guanghua, et al. Study of resistance to sulfate attack of carbonated reactive MgO-stabilized soils[J]. Rock and Soil Mechanics,2016,37(11):3057 − 3064. (in Chinese with English abstract)

    [18]

    刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报,2015,37(1):148 − 155. [LIU Songyu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering,2015,37(1):148 − 155. (in Chinese with English abstract) doi: 10.11779/CJGE201501018

    [19]

    中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    [Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [20]

    中华人民共和国住房和城乡建设部. 建筑地基检测技术规范: JGJ 340—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for testing of building foundation soils: JGJ 340—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)

    [21]

    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国计划出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of building foundation: GB 50007—2011[S]. Beijing: China Planning Press, 2012. (in Chinese)

  • 加载中

(11)

(5)

计量
  • 文章访问数:  1065
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2021-03-09
修回日期:  2021-05-08
刊出日期:  2022-01-15

目录