黄土湿陷微观机理研究现状及发展趋势

范文, 魏亚妮, 于渤, 邓龙胜, 于宁宇. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质, 2022, 49(5): 144-156. doi: 10.16030/j.cnki.issn.1000-3665.202108064
引用本文: 范文, 魏亚妮, 于渤, 邓龙胜, 于宁宇. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质, 2022, 49(5): 144-156. doi: 10.16030/j.cnki.issn.1000-3665.202108064
FAN Wen, WEI Yani, YU Bo, DENG Longsheng, YU Ningyu. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144-156. doi: 10.16030/j.cnki.issn.1000-3665.202108064
Citation: FAN Wen, WEI Yani, YU Bo, DENG Longsheng, YU Ningyu. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144-156. doi: 10.16030/j.cnki.issn.1000-3665.202108064

黄土湿陷微观机理研究现状及发展趋势

  • 基金项目: 国家自然科学基金青年基金项目(42002285);中央高校基础研究培育项目(300102260103);陕西科技厅项目(2019SF-233)
详细信息
    作者简介: 范文(1967-),男,博士,教授,主要从事地质工程与岩土工程方面的教学和科研。E-mail:fanwen@chd.edu.cn
    通讯作者: 魏亚妮(1986-),女,博士,讲师,主要从事黄土湿陷性与微结构方面的研究。E-mail:weiyani2006@126.com
  • 中图分类号: TU444

Research progress and prospect of loess collapsible mechanism in micro-level

More Information
  • 黄土特有的湿陷性使其具有遇水软化和工程扰动的强致灾特性,从根本上认清黄土的湿陷机理,是解决黄土地区地质灾害及工程地质问题的迫切需求。文章搜集整理黄土湿陷机理方面的研究成果,从黄土的胶结物组成、性质及胶结方式,微结构特征和颗粒间作用力等三个方面归纳总结黄土湿陷微观机理的研究现状。通过实例分析初步探讨了延安新区马兰黄土的湿陷机理。结果表明:(1)黄土的微结构特征回答了黄土“如何湿陷”的问题,颗粒间胶结物组成、性质及胶结方式以及颗粒间作用力直接回答了黄土“为何湿陷”的问题;(2)延安新区马兰黄土中大于23 μm的镶嵌孔隙为湿陷提供主要空间,黏土胶结的水化膨胀是引起颗粒间强度降低、发生湿陷的主要原因之一;(3)目前黄土湿陷机理研究仍不够系统、深入,一些湿陷现象仍缺乏合理的解释,由此认为高精度的三维表征是黄土微结构研究的基础,水、力作用下微结构的高精度动态演化观测,以及黄土中胶结物的组成、性质及胶结方式的精细化研究,是理解黄土“如何湿陷”和“为何湿陷”的重要途径;(4)在此基础上,建立不同类型黄土的微观信息数据库,通过数理分析及人工智能等方法,明确单一要素对宏观湿陷行为的控制作用,同时构建考虑主要微观要素的理论模型,预测不同条件下的宏观湿陷行为。以上研究将对深入理解黄土湿陷机理、建立黄土湿陷微观要素与宏观行为的定量联系具有重要理论意义和实际应用价值。

  • 加载中
  • 图 1  黄土颗粒形态[52]

    Figure 1. 

    图 2  SEM图像中黄土颗粒形态及接触关系

    Figure 2. 

    图 3  黄土孔隙类型[31]

    Figure 3. 

    图 4  颗粒球度分布变化对比

    Figure 4. 

    图 5  颗粒方向角分布对比

    Figure 5. 

    图 6  孔隙数量分布对比

    Figure 6. 

    图 7  不同状态下黄土样品中相对孔隙数量分布

    Figure 7. 

    图 8  不同类型孔隙湿陷前后CT图像对比(单位:μm)

    Figure 8. 

    图 9  颗粒间胶结物处EDS测点分布

    Figure 9. 

    表 1  国内外黄土孔隙分类

    Table 1.  Classification of pores in loess

    孔隙分类及d的范围/μm分类依据参考文献
    微孔隙(胶结物孔隙):
    d<2
    小孔隙(镶嵌孔隙):
    2≤d<8
    中孔隙(支架孔隙、镶嵌孔隙):
    8≤d<32
    大孔隙(根洞、虫孔、裂隙):
    d≥32
    压汞法[30]
    小孔隙:d<108
    大孔隙:d≥108
    偏光显微镜[26]
    支架孔隙:8≤d<20
    架空孔隙:20≤d<80
    偏光显微镜[32]
    管状孔隙或大孔隙:
    100≤d<500
    粒间孔隙:
    8≤d<100
    集粒内孔隙:
    d<8
    [34]
    下载: 导出CSV

    表 2  孔隙数量分布拟合曲线参数

    Table 2.  Parameters of the fitting curves for the pore number distribution

    样品状态数量分布(伽马分布)
    αβR2
    原状2.876.290.9320
    1000 kPa2.816.470.9636
    1000 kPa湿陷1.878.800.9702
    下载: 导出CSV

    表 3  不同溶液湿陷量对比

    Table 3.  Comparison of collapsible deformations using solutions with different polarities

    溶液介电常数(室温)湿陷量/mm
    80.400.87
    甲醇32.700.74
    环己烷2.020.02
    冰乙酸6.151.22
    下载: 导出CSV
  • [1]

    彭建兵,段钊. 听黄土粒儿说滑坡[J]. 自然杂志,2018,40(4):285 − 289. [PENG Jianbing,DUAN Zhao. Landslides in the words of little loess-grain[J]. Chinese Journal of Nature,2018,40(4):285 − 289. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-9608.2018.04.008

    [2]

    余文龙,张健,张顺峰,等. 黄土结构性定量化研究新进展[J]. 水文地质工程地质,2011,38(5):120 − 127. [YU Wenlong,ZHANG Jian,ZHANG Shunfeng,et al. Advances in quantitative structural research of loess[J]. Hydrogeology & Engineering Geology,2011,38(5):120 − 127. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2011.05.018

    [3]

    邵生俊,龙吉勇,杨生,等. 湿陷性黄土结构性变形特性分析[J]. 岩土力学,2006,27(10):1668 − 1672. [SHAO Shengjun,LONG Jiyong,YANG Sheng,et al. Analysis of structural deformation properties of collapsible loess[J]. Rock and Soil Mechanics,2006,27(10):1668 − 1672. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.10.005

    [4]

    胡再强,沈珠江,谢定义. 非饱和黄土的结构性研究[J]. 岩石力学与工程学报,2000,19(6):775 − 779. [HU Zaiqiang,SHEN Zhujiang,XIE Dingyi. Research on structural behavior of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(6):775 − 779. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2000.06.019

    [5]

    张茂省,胡炜,孙萍萍,等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报,2016,7(4):323 − 334. [ZHANG Maosheng,HU Wei,SUN Pingping,et al. Advances and prospects of water sensitivity of loess and the induced loess landslides[J]. Journal of Earth Environment,2016,7(4):323 − 334. (in Chinese with English abstract) doi: 10.7515/JEE201604001

    [6]

    陈林万,张晓超,裴向军,等. 降雨诱发直线型黄土填方边坡失稳模型试验[J]. 水文地质工程地质,2021,48(6):151 − 160. [CHEN Linwan,ZHANG Xiaochao,PEI Xiangjun,et al. Model test of the linear loess fill slope instability induced by rainfall[J]. Hydrogeology & Engineering Geology,2021,48(6):151 − 160. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202010041

    [7]

    成玉祥,张卜平,唐亚明. 溯源侵蚀引发的拉裂-倾倒型黄土崩塌形成机制[J]. 中国地质灾害与防治学报,2021,32(5):86 − 91. [CHENG Yuxiang,ZHANG Buping,TANG Yaming. The mechanism of bending-toppling loess collapse caused by headward erosion[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):86 − 91. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-10

    [8]

    许强,魏勇,彭大雷,等. 泾阳南塬蒋刘4#滑坡特征及成因机制[J]. 水文地质工程地质,2018,45(1):123 − 130. [XU Qiang,WEI Yong,PENG Dalei,et al. Characteristics and failure mechanism of the Jiangliu 4# landslide in the southern tableland in Jingyang County[J]. Hydrogeology & Engineering Geology,2018,45(1):123 − 130. (in Chinese with English abstract)

    [9]

    林在贯,舒天开. 西北黄土湿陷性之初步探讨[J]. 水文地质工程地质,1958(4):1 − 7. [LIN Zaiguan,SHU Tiankai. Preliminary discussion of loess collapsibility in northwest China[J]. Hydrogeology & Engineering Geology,1958(4):1 − 7. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.1958.04.001

    [10]

    郑建国,张苏民. 湿陷性黄土在增湿时的强度特性[J]. 水文地质工程地质,1989(2):6 − 10. [ZHENG Jianguo,ZHANG Sumin. The strength characteristics of collapsible loess during moistening process[J]. Hydrogeology & Engineering Geology,1989(2):6 − 10. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.1989.02.002

    [11]

    刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997

    LIU Zudian. Mechanics and engineering of loess[M]. Xi’an: Shaanxi Science and Technology Press, 1997. (in Chinese)

    [12]

    中华人民共和国住房和城乡建设部.湿陷性黄土地区建筑规范: GB 50025—2004[S]. 北京: 中国建筑工业出版社, 2004

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for building construction in collapsible loess regions: GB 50025—2004[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)

    [13]

    汤连生. 黄土湿陷性的微结构不平衡吸力成因论[J]. 工程地质学报,2003,11(1):30 − 35. [TANG Liansheng. Synthetic effect of microstructure and uneven suction on loess subsidence[J]. Journal of Engineering Geology,2003,11(1):30 − 35. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2003.01.006

    [14]

    陈存礼,高鹏,胡再强. 黄土的增湿变形特性及其与结构性的关系[J]. 岩石力学与工程学报,2006,25(7):1352 − 1360. [CHEN Cunli,GAO Peng,HU Zaiqiang. Moistening deformation characteristic of loess and its relation to structure[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1352 − 1360. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.07.009

    [15]

    刘海松,倪万魁,颜斌,等. 黄土结构强度与湿陷性的关系初探[J]. 岩土力学,2008,29(3):722 − 726. [LIU Haisong,NI Wankui,YAN Bin,et al. Discussion on relationship between structural strength and collapsibility of loess[J]. Rock and Soil Mechanics,2008,29(3):722 − 726. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.03.028

    [16]

    骆亚生,胡仲有,张爱军. 非饱和黄土结构性参数与其强度指标关系初探[J]. 岩土力学,2009,30(4):943 − 948. [LUO Yasheng,HU Zhongyou,ZHANG Aijun. Regularity of relation between structural parameter and strength indexes of unsaturated loess[J]. Rock and Soil Mechanics,2009,30(4):943 − 948. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.04.014

    [17]

    许领,戴福初,金艳丽. 从非饱和土力学角度探讨黄土湿陷机制[J]. 水文地质工程地质,2009,36(4):62 − 65. [XU Ling,DAI Fuchu,JIN Yanli. Discussion on the mechanism of loess collapsibility from the perspective of unsaturated soil mechanics theory[J]. Hydrogeology & Engineering Geology,2009,36(4):62 − 65. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.04.014

    [18]

    蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报,2019,41(2):195 − 254. [JIANG Mingjing. New paradigm for modern soil mechanics:Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering,2019,41(2):195 − 254. (in Chinese with English abstract)

    [19]

    崔素丽,黄森,韩琳,等. 水泥窑灰改性黄土的湿陷性和强度特性研究[J]. 水文地质工程地质,2018,45(4):73 − 78. [CUI Suli,HUANG Sen,HAN Lin,et al. A study of the collapsibility and strength property of loess stabilized by cement kiln ash[J]. Hydrogeology & Engineering Geology,2018,45(4):73 − 78. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2018.04.11

    [20]

    王玉涛,刘小平,曹晓毅. 基于主成分分析法的Q2黄土湿陷特性研究[J]. 水文地质工程地质,2020,47(4):141 − 148. [WANG Yutao,LIU Xiaoping,CAO Xiaoyi. A study of the collapsibility of Q2 loess based on principal component analysis[J]. Hydrogeology & Engineering Geology,2020,47(4):141 − 148. (in Chinese with English abstract)

    [21]

    朱凤基,南静静,魏颖琪,等. 黄土湿陷系数影响因素的相关性分析[J]. 中国地质灾害与防治学报,2019,30(2):128 − 133. [ZHU Fengji,NAN Jingjing,WEI Yingqi,et al. Mathematical statistical analysis on factors affecting collapsible coefficient of loess[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):128 − 133. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2019.02.17

    [22]

    谢婉丽,王延寿,马中豪,等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质,2015,29(2):397 − 407. [XIE Wanli,WANG Yanshou,MA Zhonghao,et al. Research status and prospect of loess collapsibility mechanism[J]. Geoscience,2015,29(2):397 − 407. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2015.02.025

    [23]

    高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报,1990,12(4):1 − 10. [GAO Guorui. A structure theory for collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering,1990,12(4):1 − 10. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1990.04.001

    [24]

    DUDLEY J H. Review of collapsing soils[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(3):925 − 947. doi: 10.1061/JSFEAQ.0001426

    [25]

    关文章. 试论可溶盐与黄土湿陷机理[J]. 桂林冶金地质学院学报,1986,6(3):271 − 278. [GUAN Wenzhang. On soluble salts and the mechanism of loess collapsibility[J]. Journal of Guilin College of Geology,1986,6(3):271 − 278. (in Chinese with English abstract)

    [26]

    杨运来. 黄土湿陷机理的研究[J]. 中国科学(B辑),1988(7):756 − 766. [YANG Yunlai. Research on mechanism of loess collapsibility[J]. Science China (B volume),1988(7):756 − 766. (in Chinese)

    [27]

    郭见扬. 关于湿陷原因的研究[J]. 水文地质工程地质,1958(4):7 − 11. [GUO Jianyang. Research on reason of loess collapsibility[J]. Hydrogeology & Engineering Geology,1958(4):7 − 11. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.1958.04.002

    [28]

    高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学,1980(12):1203 − 1208. [GAO Guorui. Microstructure classification and collapsibility of loess[J]. Science China,1980(12):1203 − 1208. (in Chinese)

    [29]

    GAO G R. Formation and development of the structure of collapsing loess in China[J]. Engineering Geology,1988,25(2/3/4):235 − 245. doi: 10.1016/0013-7952(88)90029-4

    [30]

    雷祥义,王书法. 黄土的孔隙大小与湿陷性[J]. 水文地质工程地质,1987(5):15 − 18. [LEI Xiangyi,WANG Shufa. Size of loess pores in relation to collapsibility[J]. Hydrogeology & Engineering Geology,1987(5):15 − 18. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.1987.05.006

    [31]

    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987(12): 1309 − 1318. [LEI Xiangyi. Classification of loess pores in relation to collapsibility[J]. Science China (B volume), 1987(12): 1309 − 1318. (in Chinese)

    [32]

    赵景波,陈云. 黄土的孔隙与湿陷性研究[J]. 工程地质学报,1994,2(2):76 − 83. [ZHAO Jingbo,CHEN Yun. Study on pores and collapsibility of loess[J]. Journal of Engineering Geology,1994,2(2):76 − 83. (in Chinese with English abstract)

    [33]

    胡瑞林,官国琳,李向全,等. 黄土湿陷性的微结构效应[J]. 工程地质学报,1999,7(2):161 − 167. [HU Ruilin,GUAN Guolin,LI Xiangquan,et al. Microstructure effect on the subsidence of loess[J]. Journal of Engineering Geology,1999,7(2):161 − 167. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.1999.02.010

    [34]

    OSIPOV V I, SOKOLOV V N. Factors and mechanism of loess collapsibility[C]// DERBYSHIRE E, DIJKSTRA T, SMALLEY I J. Genesis and properties of collapsible soils. Loughborough: Springer, 1994: 49 − 63.

    [35]

    孙建中. 黄土学(上篇)[M]. 香港: 香港考古学会, 2005

    SUN Jianzhong. Loessology (Previous volume)[M]. Hong Kong: Hong Kong Archaeological Society, 2005. (in Chinese)

    [36]

    辛若希. 可溶盐含量对黑方台黄土湿陷性影响的试验研究[D]. 郑州: 华北水利水电大学, 2017

    XIN Ruoxi. A laboratory study of the effect of soluble salt on loess collapsibility in Heifangtai area[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017. (in Chinese with English abstract)

    [37]

    陈琼. 黏土吸附结合水动力学模型及机理研究[D]. 武汉: 中国地质大学, 2013

    CHEN Qiong. Kinetics model and mechanism of clay adsorbing bound water[D]. Wuhan: China University of Geosciences, 2013. (in Chinese with English abstract)

    [38]

    张龙. 抑制剂对黏土矿物结合水的影响研究[D]. 成都: 西南石油大学, 2015

    ZHANG Long. Research on influence of inhibitors on bound water in clay minerals[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese with English abstract)

    [39]

    郑晏武. 中国黄土的湿陷性[M]. 北京: 地质出版社, 1982

    ZHENG Yanwu. Collapsibility of loess in China[M]. Beijing: Geological Publishing House, 1982. (in Chinese)

    [40]

    王绪民,陈善雄,程昌炳. 酸性溶液浸泡下原状黄土物理力学特性试验研究[J]. 岩土工程学报,2013,35(9):1619 − 1626. [WANG Xumin,CHEN Shanxiong,CHENG Changbing. Experimental study on physico-mechanical characteristics of undisturbed loess soaked in acid solution[J]. Chinese Journal of Geotechnical Engineering,2013,35(9):1619 − 1626. (in Chinese with English abstract)

    [41]

    HANDY R L. Collapsible loess in Iowa[J]. Soil Science Society of America Journal,1973,37(2):281 − 284. doi: 10.2136/sssaj1973.03615995003700020033x

    [42]

    YUAN Z X,WANG L M. Collapsibility and seismic settlement of loess[J]. Engineering Geology,2009,105(1/2):119 − 123. doi: 10.1016/j.enggeo.2008.12.002

    [43]

    高国瑞. 兰州黄土显微结构和湿陷机理的探讨[J]. 兰州大学学报,1979(2):123 − 134. [GAO Guorui. Study of the microstructures and the collapse mechanism in loess soil from Lanzhou[J]. Journal of Lanzhou University,1979(2):123 − 134. (in Chinese with English abstract)

    [44]

    MELLORS T W. The influence of the clay component in loess on collapse of the soil structure[C]//DERBYSHIRE E, DIJKSTRA T, SMALLEY I J. Genesis and properties of collapsible soils. Loughborough: Springer, 1994: 207 − 216.

    [45]

    WANG H K,QIAN H,GAO Y Y,et al. Classification and physical characteristics of bound water in loess and its main clay minerals[J]. Engineering Geology,2020,265:105394. doi: 10.1016/j.enggeo.2019.105394

    [46]

    LI Y L,WANG T H,SU L J. Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis[J]. Soil Science,2015,180(3):90 − 96. doi: 10.1097/SS.0000000000000121

    [47]

    LIU Z,LIU F Y,MA F L,et al. Collapsibility,composition,and microstructure of loess in China[J]. Canadian Geotechnical Journal,2016,53(4):673 − 686. doi: 10.1139/cgj-2015-0285

    [48]

    LI X A,LI L C,SONG Y X,et al. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province,China—A study from a micro perspective[J]. Engineering Geology,2019,249:77 − 88. doi: 10.1016/j.enggeo.2018.12.024

    [49]

    LI P,XIE W L,PAK R Y S,et al. Microstructural evolution of loess soils from the Loess Plateau of China[J]. Catena,2019,173:276 − 288. doi: 10.1016/j.catena.2018.10.006

    [50]

    ROGERS C D F,DIJKSTRA T A,SMALLEY I J. Hydroconsolidation and subsidence of loess:Studies from China,Russia,North America and Europe:In memory of Jan Sajgalik[J]. Engineering Geology,1994,37(2):83 − 113. doi: 10.1016/0013-7952(94)90045-0

    [51]

    RONGERS C D F. Types and distribution of collapsible soils[C]//DERBYSHIRE E, DIJKSTRA T, SMALLEY I J. Genesis and properties of collapsible soils. Loughborough: Springer, 1994: 1 − 18.

    [52]

    高国瑞. 中国黄土的微结构[J]. 科学通报,1980,20:945 − 948. [GAO Guorui. Microstructure of loess in China[J]. Chinese Science Bulletin,1980,20:945 − 948. (in Chinese)

    [53]

    DERBYSHIRE E,MELLORS T W. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain:A comparison[J]. Engineering Geology,1988,25(2/3/4):135 − 175. doi: 10.1016/0013-7952(88)90024-5

    [54]

    KLUKANOVA A,SAJGALIK J. Changes in loess fabric caused by collapse:An experimental study[J]. Quaternary International,1994,24:35 − 39. doi: 10.1016/1040-6182(94)90036-1

    [55]

    雷祥义. 西安黄土显微结构类型[J]. 西北大学学报(自然科学版),1983(4):46 − 71. [LEI Xiangyi. Type of the loess microtextures in Xi’an District[J]. Journal of Northwest University (Natural Science Edition),1983(4):46 − 71. (in Chinese with English abstract)

    [56]

    方祥位,申春妮,李春海,等. 陕西蒲城黄土微观结构特征及定量分析[J]. 岩石力学与工程学报,2013,32(9):1917 − 1925. [FANG Xiangwei,SHEN Chunni,LI Chunhai,et al. Quantitative analysis of microstructure characteristics of Pucheng loess in Shaanxi Province[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(9):1917 − 1925. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.09.025

    [57]

    张宗祜. 我国黄土类土显微结构的研究[J]. 地质学报,1964(3):357 − 369. [ZHANG Zonghu. Research on the microstructure of loessial soil in China[J]. Acta Geologica Sinica,1964(3):357 − 369. (in Chinese)

    [58]

    王永焱,滕志宏. 中国黄土的微结构及其在时代上和区域上的变化—扫描电子显微镜下的研究[J]. 科学通报,1982(2):102 − 105. [WANG Yongyan,TENG Zhihong. Microstructure of loess in China and its variation in times and region: A study under scanning electron microscope[J]. Chinese Science Bulletin,1982(2):102 − 105. (in Chinese)

    [59]

    雷祥义. 黄土显微结构类型与物理力学性质指标之间的关系[J]. 地质学报,1989,63(2):182 − 191. [LEI Xiangyi. The relationship between the microfabric types and the indices of physico-mechanical properties in loess of China[J]. Acta Geologica Sinica,1989,63(2):182 − 191. (in Chinese with English abstract)

    [60]

    WANG M, BAI X H. Collapse property and microstructure of loess[C]//Advances in unsaturated soil, seepage, and environmental geotechnics. Reston, VA: ASCE Press, 2006: 111 − 118.

    [61]

    WEI Y N,FAN W,YU B,et al. Characterization and evolution of three-dimensional microstructure of Malan loess[J]. Catena,2020,192:104585. doi: 10.1016/j.catena.2020.104585

    [62]

    YU B,FAN W,FAN J H,et al. X-ray micro-computed tomography (μ-CT) for 3D characterization of particle kinematics representing water-induced loess micro-fabric collapse[J]. Engineering Geology,2020,279:105895. doi: 10.1016/j.enggeo.2020.105895

    [63]

    YU B,FAN W,DIJKSTRA T A,et al. Heterogeneous evolution of pore structure during loess collapse:Insights from X-ray micro-computed tomography[J]. Catena,2021,201:105206. doi: 10.1016/j.catena.2021.105206

    [64]

    魏亚妮. 水作用下黄土三维微结构演化及湿陷机理研究[D]. 西安: 长安大学, 2019

    WEI Yani. Research on three-dimensional microstructure evolution during wetting and collapsible mechanism of loess[D]. Xi’an: Chang’an University, 2019. (in Chinese with English abstract)

    [65]

    季峻峰,陈骏,王洪涛. 陕西洛川黄土-古土壤剖面中伊利石结晶度—黄土物质来源和古气候环境的指示[J]. 地质论评,1997(2):181 − 185. [JI Junfeng,CHEN Jun,WANG Hongtao. Crystallinity of illite from the Luochuan loess-paleosol sequence,Shaanxi Province— Indicators origin and paleoclimate of loess[J]. Geological Review,1997(2):181 − 185. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.1997.02.010

    [66]

    LI Y R,HE S D,DENG X H,et al. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology[J]. Journal of Asian Earth Sciences,2018,154:271 − 279. doi: 10.1016/j.jseaes.2017.12.028

    [67]

    蒲毅彬,陈万业,廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报,2000,22(1):49 − 54. [PU Yibin,CHEN Wanye,LIAO Quanrong. Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering,2000,22(1):49 − 54. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2000.01.009

    [68]

    DENG L S,FAN W,LIU S P,et al. Quantitative research and characterization of the loess microstructure in the Bai Lu Tableland,Shaanxi province,China[J]. Advances in Civil Engineering,2020,2020:3681382.

    [69]

    WEI T T,FAN W,YU N Y,et al. Three-dimensional microstructure characterization of loess based on a serial sectioning technique[J]. Engineering Geology,2019,261:105265. doi: 10.1016/j.enggeo.2019.105265

    [70]

    WEI T T,FAN W,YUAN W N,et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau,China[J]. Environmental Earth Sciences,2019,78:333. doi: 10.1007/s12665-019-8331-z

    [71]

    WEI Y N,FAN W,YU N Y,et al. Permeability of loess from the South Jingyang Plateau under different consolidation pressures in terms of the three-dimensional microstructure[J]. Bulletin of Engineering Geology and the Environment,2020,79:4841 − 4857. doi: 10.1007/s10064-020-01875-y

    [72]

    ANDRADE J E,VLAHINIĆ I,LIM K W,et al. Multiscale ‘tomography-to-simulation ’ framework for granular matter:The road ahead[J]. Géotechnique Letters,2012,2(3):135 − 139.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  2846
  • PDF下载数:  139
  • 施引文献:  0
出版历程
收稿日期:  2021-08-27
修回日期:  2021-12-06
录用日期:  2022-01-25
刊出日期:  2022-09-15

目录