考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析

陈梦迪, 姜振蛟, 霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析[J]. 水文地质工程地质, 2023, 50(2): 63-72. doi: 10.16030/j.cnki.issn.1000-3665.202112039
引用本文: 陈梦迪, 姜振蛟, 霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析[J]. 水文地质工程地质, 2023, 50(2): 63-72. doi: 10.16030/j.cnki.issn.1000-3665.202112039
CHEN Mengdi, JIANG Zhenjiao, HUO Chenchen. Stochastic modeling of in-situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 63-72. doi: 10.16030/j.cnki.issn.1000-3665.202112039
Citation: CHEN Mengdi, JIANG Zhenjiao, HUO Chenchen. Stochastic modeling of in-situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 63-72. doi: 10.16030/j.cnki.issn.1000-3665.202112039

考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析

  • 基金项目: 国家自然科学基金项目(42172268)
详细信息
    作者简介: 陈梦迪(1999-),女,硕士研究生,主要从事多场耦合数值模拟研究。E-mail:mdchen608@126.com
    通讯作者: 姜振蛟(1986-),男,博士,教授,主要从事储层精细刻画与模拟研究。E-mail:zjjiang@jlu.edu.cn
  • 中图分类号: P641.2

Stochastic modeling of in-situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity

More Information
  • 砂岩型铀矿矿层渗透系数普遍具有空间非均匀性,但受试验和分析手段制约,非均匀渗透系数难以准确刻画,导致地浸采铀过程预测出现偏差,限制了地浸采铀过程精细化管控。针对该问题提出一种矿层非均匀参数分布随机表征方法,在此基础上,开展水盐耦合数值随机模拟,揭示不同渗透系数空间分布条件下,群井抽注所引起的溶浸剂储层内部迁移过程和影响范围。在内蒙古某铀矿床应用结果显示:沿区域地下水流方向渗透系数增加,有利于注入溶浸剂疏散;相反,溶浸剂易出现聚集效应。利用水位监测数据对模型边界条件进行识别与验证后,在均质假设条件下溶浸剂扩散速率为210 m2/d,20 a 开采周期波及范围为1.53 km2;考虑矿层非均质性和参数不确定性,预测溶浸剂扩散速率为191~228 m2/d,波及范围为1.47~1.74 km2。相比于均质假设,溶浸剂扩散速率和波及范围不确定性显著,分别为17.62%和17.65%。考虑渗透系数非均质性和不确定性,使得溶浸剂迁移转化行为预测结果更具代表性,可为合理制定地浸采铀方案提供更加可靠的依据。

  • 加载中
  • 图 1  研究区水文地质条件及观测区渗透系数分布与统计情况

    Figure 1. 

    图 2  根据水位拟合结果与污染物浓度分布精细化模拟区

    Figure 2. 

    图 3  模拟区内随机控制点位和渗透系数非均匀分布情形

    Figure 3. 

    图 4  渗透系数沿地下水流运动方向增加时抽注过程溶浸剂浓度分布

    Figure 4. 

    图 5  渗透系数沿地下水流运动方向减小时抽注过程溶浸剂浓度分布

    Figure 5. 

    图 6  3 种渗透系数空间分布情形下溶浸剂扩展面积随时间变化曲线

    Figure 6. 

    图 7  地浸采铀20 a 后模拟结果

    Figure 7. 

    表 1  采区监测数据与参数计算结果

    Table 1.  Data measurements and hydraulic conductivities estimated at the exploited zone

    井号降深
    /m
    注采强度
    /(m3·d−1
    渗透系数
    /(m·d−1
    井号降深
    /m
    注采强度
    /(m3·d−1
    渗透系数
    /(m·d−1
    #0130.80207.680.26#1137.32221.850.30
    #0245.24183.280.07#1248.93190.650.06
    #0332.56212.151.08#1331.16119.410.53
    #0424.37211.770.70#1425.46199.723.02
    #0535.23207.020.24#1545.00207.480.11
    #0630.10199.250.64#1634.00129.300.09
    #0733.43211.210.72#1727.79215.370.23
    #0830.18186.520.17#1825.60216.751.31
    #0929.45190.880.87#1926.72214.093.91
    #1029.64215.180.78#2035.27208.550.16
    下载: 导出CSV
  • [1]

    田力. 碳中和视角下的核能贡献[J]. 能源,2021(5):30 − 33. [TIAN Li. Nuclear energy contribution from the perspective of carbon neutralization[J]. Energy,2021(5):30 − 33. (in Chinese)

    [2]

    SHEN Nao,LI Jun,GUO Yongfan,et al. Thermodynamic modeling of in situ leaching of sandstone-type uranium minerals[J]. Journal of Chemical & Engineering Data,2020,65(4):2017 − 2031.

    [3]

    梁卫国,赵阳升,徐素国,等. 原位溶浸采矿理论研究[J]. 太原理工大学学报,2012,43(3):382 − 387. [LIANG Weiguo,ZHAO Yangsheng,XU Suguo,et al. Theoretical study of in situ solution mining[J]. Journal of Taiyuan University of Technology,2012,43(3):382 − 387. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9432.2012.03.030

    [4]

    STALLMAN R W. Numerical analysis of regional water levels to define aquifer hydrology[J]. Transactions,American Geophysical Union,1956,37(4):451. doi: 10.1029/TR037i004p00451

    [5]

    陈小月,黄健民,卢薇. 基于FEFLOW的广州金沙洲地区地下水流场数值模拟研究[J]. 地下水,2014,36(4):4 − 7. [CHEN Xiaoyue,HUANG Jianmin,LU Wei. Numcrical simulation study of groundwater flow based on FEFLOW software in Jinshazhou of Guangdong Province[J]. Ground Water,2014,36(4):4 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2014.04.002

    [6]

    张淼,潘杰,刘生财,等. 基于FEFLOW的地下水污染数值模拟及预测—以宁波某印染厂为例[J]. 绍兴文理学院学报(自然科学),2017,37(1):21 − 27. [ZHANG Miao,PAN Jie,LIU Shengcai,et al. Numerical simulation and prediction of groundwater pollution based on FEFLOW:An illustrative study of a printing and dyeing factory in Ningbo[J]. Journal of Shaoxing University (Natural Science),2017,37(1):21 − 27. (in Chinese with English abstract)

    [7]

    常云霞. 地浸采铀井场溶浸范围的地下水动力学控制模拟研究[D]. 衡阳: 南华大学, 2020

    CHANG Yunxia. Simulation study on groundwater dynamics control of leaching range of in-situ uranium well field[D]. Hengyang: University of South China, 2020. (in Chinese with English abstract)

    [8]

    YANG Jie,TAO Yuezan,REN Weixin,et al. Numerical simulation of groundwater contaminant transport in unsaturated flow[J]. Water Supply,2020,20(8):3730 − 3738. doi: 10.2166/ws.2020.136

    [9]

    邱文杰,刘正邦,杨蕴,等. 砂岩型铀矿CO2+O2地浸采铀的反应运移数值模拟[J]. 中国科学:技术科学,2022,52(4):627 − 638. [QIU Wenjie,LIU Zhengbang,YANG Yun,et al. Reactive transport numerical modeling of CO2+O2 in-situ leaching in sandstone-type uranium ore[J]. Scientia Sinica (Technologica),2022,52(4):627 − 638. (in Chinese with English abstract)

    [10]

    YANG Yun,QIU Wenjie,LIU Zhengbang,et al. Quantifying the impact of mineralogical heterogeneity on reactive transport modeling of CO2 + O2 in situ leaching of uranium[J]. Acta Geochimica,2022,41(1):50 − 63. doi: 10.1007/s11631-021-00502-1

    [11]

    王泽江,邵磊昌,李秦,等. 地下铀矿开采方法的数值模拟技术研究[J]. 铀矿冶,2017,36(2):73 − 80. [WANG Zejiang,SHAO Leichang,LI Qin,et al. Study on numerical modeling technology for underground mining method[J]. Uranium Mining and Metallurgy,2017,36(2):73 − 80. (in Chinese with English abstract)

    [12]

    刘玲,陈坚,牛浩博,等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质,2022,49(1):164 − 174. [LIU Ling,CHEN Jian,NIU Haobo,et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology,2022,49(1):164 − 174. (in Chinese with English abstract)

    [13]

    孙启明,高茂生,党显璋. 垃圾填埋场渗滤液变密度地下水溶质运移模拟[J]. 吉林大学学报(地球科学版),2022,52(4):1265 − 1274. [SUN Qiming,GAO Maosheng,DANG Xianzhang. Simulation of solute transport in variable-density groundwater for landfill leachate[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1265 − 1274. (in Chinese with English abstract)

    [14]

    李春光,谭凯旋. 地浸采铀地下水中放射性污染物迁移的模拟[J]. 南华大学学报(自然科学版),2011,25(3):25 − 30. [LI Chunguang,TAN Kaixuan. Modeling the migration of radioactive contaminants in groundwater of in situ leaching uranium mine[J]. Journal of University of South China (Science and Technology),2011,25(3):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-0062.2011.03.006

    [15]

    周义朋, 沈照理, 孙占学, 等. 某砂岩型铀矿地浸采铀试验溶浸液化学组分运移模拟[J]. 中国矿业, 2012, 21(增刊1): 298 − 300

    ZHOU Yipeng, SHEN Zhaoli, SUN Zhanxue, et al. The simulation of leaching solution chemical components transportation during the in situ leaching uranium mining experiment in a sandstone-type uranium deposit[J]. China Mining Magazine, 2012, 21(Sup 1): 298 − 300. (in Chinese with English abstract)

    [16]

    苏振兴,高文生,杜风雷,等. 成层土中污染物迁移数值模拟及参数敏感性分析[J]. 地质灾害与环境保护,2020,31(4):53 − 62. [SU Zhenxing,GAO Wensheng,DU Fenglei,et al. Numerical simulation and parameter sensitivity analysis of pollutant migration in stratified soil[J]. Journal of Geological Hazards and Environment Preservation,2020,31(4):53 − 62. (in Chinese with English abstract)

    [17]

    黄群英. 某砂岩铀矿酸法地浸溶质运移与酸化进程分析[J]. 有色金属(冶炼部分),2015(6):50 − 54. [HUANG Qunying. Analysis of solute transportation and acidification process during in-situ acid leaching of sandstone uranium ore[J]. Nonferrous Metals (Extractive Metallurgy),2015(6):50 − 54. (in Chinese with English abstract)

    [18]

    汪润超,李寻,罗跃,等. 基于数值模拟分析赤铁矿对地浸采铀的影响[J]. 有色金属(冶炼部分),2021(8):87 − 93. [WANG Runchao,LI Xun,LUO Yue,et al. Influence of hematite on in-situ leaching of uranium based on numerical simulation[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):87 − 93. (in Chinese with English abstract)

    [19]

    汪润超,李寻,罗跃,等. 基于TOUGHREACT模拟分析黄铁矿对酸法地浸采铀的影响[J]. 有色金属工程,2021,11(8):39 − 50. [WANG Runchao,LI Xun,LUO Yue,et al. Influence of pyrite on acid in-situ leaching of uranium based on TOUGHREACT simulation[J]. Nonferrous Metals Engineering,2021,11(8):39 − 50. (in Chinese with English abstract)

    [20]

    乔海明,徐高中,张复新,等. 层间氧化带砂岩型铀成矿过程中铁的地球化学行为—以新疆吐哈盆地十红滩铀矿床为例[J]. 沉积学报,2013,31(3):461 − 467. [QIAO Haiming,XU Gaozhong,ZHANG Fuxin,et al. Study on iron geochemical behavior in the interlayer oxidation zone sandstone-type uranium metallogenetic process:A case from Shihongtan uranium deposit in the Turpan-Hami Basin of Xinjiang[J]. Acta Sedimentologica Sinica,2013,31(3):461 − 467. (in Chinese with English abstract)

    [21]

    孙冰,陈世团,周庆来,等. 原地浸出采铀过程中浸出率影响因素分析[J]. 现代矿业,2020,36(8):89 − 93. [SUN Bing,CHEN Shituan,ZHOU Qinglai,et al. Analysis of factors affecting leaching rate in situ leaching of uranium[J]. Modern Mining,2020,36(8):89 − 93. (in Chinese with English abstract)

    [22]

    ZHAO Lixin,LI Po. Relationship between chamosite alteration and Fe-plugging in sandstone pores during acid in situ leaching of uranium[J]. Minerals,2021,11(5):497. doi: 10.3390/min11050497

    [23]

    吉宏斌,黄群英,周义朋,等. 抽注流量分配及抽注比对地浸溶液扩散的影响[J]. 铀矿冶,2017,36(3):172 − 181. [JI Hongbin,HUANG Qunying,ZHOU Yipeng,et al. Influence of in-situ leaching solution diffusion with drawing injection flux distribution and drawing injection proportion[J]. Uranium Mining and Metallurgy,2017,36(3):172 − 181. (in Chinese with English abstract)

    [24]

    李梦姣, 连国玺, 曹凤波, 等. 非均一抽注技术在地浸地下水环境保护中的应用[J]. 铀矿冶, 2017, 36(增刊1): 98−104

    LI Mengjiao, LIAN Guoxi, CAO Fengbo, et al. Study on application of non-uniform drawing and injection flow technology in groundwater protection during in-situ leaching of uranium[J]. Uranium Mining and Metallurgy, 2017, 36(Sup 1): 98−104. (in Chinese with English abstract)

    [25]

    周义朋,黎广荣,徐玲玲,等. 地浸采铀钻孔过滤器对溶液渗流影响的数值模拟[J]. 东华理工大学学报(自然科学版),2018,41(4):301 − 306. [ZHOU Yipeng,LI Guangrong,XU Lingling,et al. Numerical simulation of influence of drilling filter on solution seepage during in-situ leaching of uranium[J]. Journal of East China University of Technology (Natural Science),2018,41(4):301 − 306. (in Chinese with English abstract)

    [26]

    陈帅,姜振蛟,霍晨琛. 某铀矿地浸开采条件下的导水系数计算与分析[J]. 铀矿冶,2021,40(2):108 − 115. [CHEN Shuai,JIANG Zhenjiao,HUO Chenchen. Calculation and analysis of hydraulic conductivity in in-situ leaching uranium mine[J]. Uranium Mining and Metallurgy,2021,40(2):108 − 115. (in Chinese with English abstract)

    [27]

    聂庆林,高广东,轩华山,等. 抽水试验确定承压含水层参数方法探讨[J]. 水文地质工程地质,2009,36(4):37 − 40. [NIE Qinglin,GAO Guangdong,XUAN Huashan,et al. Methods of determining parameters of a confined aquifer with pumping tests[J]. Hydrogeology & Engineering Geology,2009,36(4):37 − 40. (in Chinese with English abstract)

    [28]

    CRESSIE N A C. Statistics for Spatial Data[M]. New York: John Wiley & Sons Inc, 1991.

    [29]

    宋述芳,吕震宙,王燕萍. 问题驱动和思维引导下的《正态分布》教学设计[J]. 高等数学研究,2019,22(4):86 − 90. [SONG Shufang,LV Zhenzhou,WANG Yanping. On problem-driven and thought-guided teaching design of normal distribution[J]. Studies in College Mathematics,2019,22(4):86 − 90. (in Chinese with English abstract)

    [30]

    张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005

    ZHANG Renduo. Spatial variation theory and its application[M]. Beijing: Science Press, 2005. (in Chinese with English abstract)

    [31]

    邱伯驺, 李景功, 潘杰. 关于用拉格朗日乘数法求条件极值的充分条件[J]. 工科数学, 1993, 9(增刊2): 26 − 31

    QIU Bozou, LI Jinggong, PAN Jie. Sufficient conditions for finding conditional extremum by Lagrange multiplier method[J]. College Mathematics, 1993, 9(Sup 2): 26 − 31. (in Chinese)

    [32]

    陈秋锦. 地下水模拟计算机软件系统—FEFLOW[J]. 中国水利,2003(18):25 − 26. [CHEN Qiujin. A groundwater simulation computer software: FEFLOW[J]. China Water Resources,2003(18):25 − 26. (in Chinese)

  • 加载中

(7)

(1)

计量
  • 文章访问数:  945
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2021-12-20
修回日期:  2022-02-24
刊出日期:  2023-03-15

目录