Main causes and mechanism for the natural oasis degeneration in the lower reaches of northwest inland basins
-
摘要:
西北内陆流域平原区降水稀少、蒸发强烈,近50 a来各流域下游区天然绿洲面积不断萎缩。以石羊河流域、艾丁湖流域为研究区,针对下游区天然绿洲退变主因与机制问题,基于农田面积、出山地表径流量及灌溉引用水量、地下水开采量和流入下游区地表径流量调查统计、潜水埋深及包气带水理指标原位监测和地下水水位统测,以及植被类型、分布范围、覆盖度和NDVI指数等遥感解译获得的资料,应用流域水循环和水量均衡理论、时间序列分析和地学多元相关分析方法开展研究,得出如下认识:(1)近50 a来,西北内陆流域下游区天然绿洲严重退化的根源是天然水资源匮乏,主因是人口数量不断增加和上、中游区拦用出山地表径流水量大。(2)灌溉耕地不断扩大是下游区天然绿洲面积萎缩的主要驱动因素,每增加1.0 km2灌溉耕地导致石羊河流域下游、艾丁湖流域平原区的天然绿洲面积分别减少1.35~2.07 km2和1.57~3.83 km2;气候越干旱、上游出山年径流水量越少,灌溉引用出山径流水量占当年总径流量的比率越大,流入下游区地表径流水量越少,由此造成下游区天然绿洲面积减少越大。(3)西北内陆流域天然绿洲退化可控,但是由于水资源不足,制约了天然绿洲退化的可控性。在水资源匮乏背景下,现状人口数量驱动的农田用水规模难以继续调减,需要有序促进经济社会用水规模与天然绿洲修复供水规模之间的和谐程度。因此,本研究成果为西北内陆流域水资源合理开发利用和天然绿洲退化修复提供了重要科学依据。
Abstract:The plain areas of northwest inland basins have few precipitation and strong evaporation. In recent 50 years, the area of natural oases in the lower reaches of each basin has been shrinking. The Shiyang River Basin and the Aiding Lake Basin are taken as the research areas, and the main causes and mechanism for natural oasis degeneration in the downstream areas are examined in this paper. Based on the investigation of farmland areas, surface runoff from the mountains and its irrigation reference water, groundwater exploitation and surface runoff flowing into the downstream areas, in-situ monitoring of shallow groundwater level depth and soil moisture physical indexes in the vadose zone, unified measurement of groundwater levels, and the type and distribution range of natural vegetation based on the data obtained from remote sensing interpretation such as coverage and NDVI index, the above problems are studied by using the theory of watershed water cycle and water balance, time series analysis and geoscience multiple correlation analysis methods. The results show that (1) the root cause of the serious degradation of the natural oases in the lower reaches of northwest inland watersheds in recent 50 years is the lack of natural water resources, the main reason are the continuous increase of population and the large-scale diversion of surface runoff from mountains in the middle reaches. (2) The continuous expansion of irrigated cultivated land is the main driving factor for the shrinkage of the natural oasis area in the lower reaches. Every increase of 1.0 km2 of irrigated cultivated land leads to the reduction of the natural oasis area in the lower reaches of the Shiyang River Basin and the plain area of the Aiding Lake Basin, which are 1.35−2.07 km2 and 1.57−3.83 km2, respectively. The drier the climate is, the less the annual runoff from the mountains in the upstream is, the greater the ratio of the runoff from the mountains blocked by irrigated farmland to the total runoff in the current year, and the less the surface runoff flowing into the downstream areas, resulting in the greater reduction of the area of natural oases in the downstream areas. (3) The degradation of natural oases in the northwest inland basins is controllable, but it is restricted by the lack of water resources. Under the background of lack of water resources, the scale of farmland water use driven by the current population is difficult to reduce. It is necessary to orderly promote the harmony between the scale of economic and social water use and the scale of natural oasis restoration and water supply. Therefore, the results of this study may provide an important scientific basis for the rational development and utilization of water resources and the restoration of natural oasis degradation in northwest China.
-
表 1 研究区自然环境与耕地和水资源开发利用概况
Table 1. Overview of natural environment and utilization of cultivated land and water resources in the study area
研究区 时段 研究区
面积
/104 km2年均
降水量
/mm人口
数量
/万人耕地
面积
/km2下游湿
地水域
面积/km2天然水资源量/(108 m3·a−1) 用水量/(108 m3·a−1) 农业用水量 总量 地下水 总量 开采量 占总用水
量比率/%单位面积灌溉量
/(104 m3·km−2)艾丁湖
流域1960以前 5.30 <30 28 433.5 >100 11.1 5.4 9.89 0.58 66.7 129.9 2010之后 67 1280.6 <20 14.79 9.69 92.3 102.0~118.2 石羊河
流域1960以前 4.16 220 92 1334.0 >50 16.6 6.9 8.12 1.85 48.9 60.9 2010之后 230 5081.5 <20 27.92 13.83 87.2 64.5~77.4 表 2 遥感解译研究区地表生态基本分类特征
Table 2. Basic characteristics of ecological remote sensing interpretation content classification in the study area
生态区类型 属性基本特征 一级 二级 三级 自然
绿洲天然
林地有林地 郁闭度大于30%的天然林,
成片或沿河带状分布灌木林地 郁闭度大于40%、高度2 m以下的
矮林地及灌丛林地疏林地 郁闭度10%~30%的稀疏林地 其它林地 未成林地 天然
草地高覆盖度草地 覆盖度大于50%的草地,
多分布于河流或湖泊周围中覆盖度草地 覆盖度20%~50%的草地,
多分布于河流或湖泊周围低覆盖度草地 覆盖度4%~20%的草地 水域
湿地河道带 天然河流,人类活动影响较少 湖泊、沼泽 天然湖泊,季节性积水或常年积水,
生长湿生植被的土地人工
绿洲耕地 水田 常年灌溉,种植水稻等水生农作物的土地 水浇地 有水源和灌溉设施,能正常灌溉的土地 旱地 无灌溉水源和设施的农田 建设
用地城镇、农村居民点、工矿和人工公园等
景观用地未利用地 无人类活动、植被覆盖率小于4%的
土地,包括戈壁荒漠、沙漠等表 3 西北内陆干旱区地下水生态功能退变程度的识别指标体系
Table 3. Identification index of degradation degree of groundwater ecological function in the northwest China inland area
识别指标 地下水生态功能不同状态下天然绿洲生态效应 正常 渐变 质变 灾变 地下水水位埋深/m 2~5 5~7 7~10 ≥10 陆表生态状况 良好 轻度恶化 中度恶化 重度恶化 陆表生态
退变指标NDVI指数 ≥0.25 0.13~0.25 0.08~0.13 <0.08 物种数量/种 ≥5 3~5 2~3 <2 植被覆盖度/% ≥50 35~50 10~35 <10 表 4 不同干旱程度下西北内陆典型流域平原区天然绿洲随灌溉耕地面积增减的变化幅度
Table 4. Variation range of the natural oases in the plain areas of the typical inland basins in northwest China with the increase or decrease of the irrigated farmland under different drought degrees
研究区 年降水量
/mm不同水文年下增减单位面积耕地引发的天然绿洲减增幅度/km2 灌溉水量
/(104 m3·km−2)丰水年 多年平均 枯水年 艾丁湖流域 <30 1.57 2.83 3.83 102.0 ~118.2 石羊河流域 220 1.35 1.54 2.07 64.5~77.4 注:表中数据是基于图9等相关分析得到。 -
[1] 王浩, 秦大庸, 王研, 等. 西北内陆干旱区生态环境及其演变趋势[J]. 水利学报,2004,35(8):8 − 14. [WANG Hao, QIN Dayong, WANG Yan, et al. Ecological status and its evolution trend in arid region of northwest China[J]. Journal of Hydraulic Engineering,2004,35(8):8 − 14. (in Chinese with English abstract)
[2] 张光辉, 聂振龙, 崔浩浩, 等. 西北内陆干旱区地下水合理开发及生态功能保护理论与实践[M]. 北京: 科学出版社, 2022
ZHANG Guanghui, NIE Zhenlong, CUI Haohao, et al. Theory and practice of groundwater rational development and ecological function protection in inland arid area of Northwest China[M]. Beijing: Science Press, 2022. (in Chinese)
[3] 郑跃军, 邢丽霞, 魏玉涛. 西北内陆城镇化对下游水生态环境的影响研究:以石羊河流域为例[J]. 人民长江,2014,45(9):81 − 84. [ZHENG Yuejun, XING Lixia, WEI Yutao. Influences of urbanization of inland river basins in northwest China on downstream water resources and ecological environment:A case of Shiyang River Basin[J]. Yangtze River,2014,45(9):81 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2014.09.023
[4] 李丽丽, 王大为, 韩涛. 2000—2015年石羊河流域植被覆盖度及其对气候变化的响应[J]. 中国沙漠,2018,38(5):1108 − 1118. [LI Lili, WANG Dawei, HAN Tao. Spatial-temporal dynamics of vegetation coverage and responding to climate change in Shiyang River Basin during 2000—2015[J]. Journal of Desert Research,2018,38(5):1108 − 1118. (in Chinese with English abstract)
[5] 王玉宝, 刘显, 史利洁, 等. 西北地区水资源与食物安全可持续发展研究[J]. 中国工程科学,2019,21(5):38 − 44. [WANG Yubao, LIU Xian, SHI Lijie, et al. Sustainable development of water resources and food security in northwest China[J]. Strategic Study of CAE,2019,21(5):38 − 44. (in Chinese with English abstract)
[6] ANTUNES C, CHOZAS S, WEST J, et al. Groundwater drawdown drives ecophysiological adjustments of woody vegetation in a semi-arid coastal ecosystem[J]. Global Change Biology,2018,24(10):4894 − 4908. doi: 10.1111/gcb.14403
[7] 刘金鹏, 费良军, 南忠仁, 等. 基于生态安全的干旱区绿洲生态需水研究[J]. 水利学报,2010,41(2):226 − 232. [LIU Jinpeng, FEI Liangjun, NAN Zhongren, et al. Study on ecological water requirement of the arid area oasis based on the theory of ecological security[J]. Journal of Hydraulic Engineering,2010,41(2):226 − 232. (in Chinese with English abstract)
[8] 曹乐, 聂振龙, 刘敏, 等. 民勤绿洲天然植被生长与地下水埋深变化关系[J]. 水文地质工程地质,2020,47(3):25 − 33. [CAO Le, NIE Zhenlong, LIU Min, et al. Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin[J]. Hydrogeology & Engineering Geology,2020,47(3):25 − 33. (in Chinese with English abstract)
[9] 金晓媚. 黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系[J]. 地学前缘,2010,17(6):181 − 186. [JIN Xiaomei. Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin[J]. Earth Science Frontiers,2010,17(6):181 − 186. (in Chinese with English abstract)
[10] 王金哲, 张光辉, 王茜, 等. 西北干旱区地下水生态功能评价指标体系构建与应用[J]. 地质学报,2021,95(5):1573 − 1581. [WANG Jinzhe, ZHANG Guanghui, WANG Qian, et al. Construction and application of evaluation index system of groundwater ecological function in northwest arid area[J]. Acta Geologica Sinica,2021,95(5):1573 − 1581. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.05.018
[11] 王金哲, 张光辉, 严明疆, 等. 干旱区地下水功能评价与区划体系指标权重解析[J]. 农业工程学报,2020,36(22):133 − 143. [WANG Jinzhe, ZHANG Guanghui, YAN Mingjiang, et al. Index weight analysis of groundwater function evaluation and zoning system in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(22):133 − 143. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.22.014
[12] 李丽琴, 王志璋, 贺华翔, 等. 基于生态水文阈值调控的内陆干旱区水资源多维均衡配置研究[J]. 水利学报,2019,50(3):377 − 387. [LI Liqin, WANG Zhizhang, HE Huaxiang, et al. Research of water resources multi-dimensional equilibrium allocation based on eco-hydrological threshold regulation in inland arid region[J]. Journal of Hydraulic Engineering,2019,50(3):377 − 387. (in Chinese with English abstract)
[13] HUANG F, CHUNYU X Z, ZHANG D R, et al. A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins[J]. Science of the Total Environment,2020,709:136155. doi: 10.1016/j.scitotenv.2019.136155
[14] CUI H H, ZHANG G H, WANG J Z, et al. Influence of multi-layered structure of vadose zone on ecological effect of groundwater in arid area:A case study of Shiyang River Basin, northwest China[J]. Water,2021,14(1):59. doi: 10.3390/w14010059
[15] 高超, 赵军, 王玉纯, 等. 石羊河流域自然植被对生态系统服务的约束效应[J]. 生态学报,2020,40(9):2851 − 2862. [GAO Chao, ZHAO Jun, WANG Yuchun, et al. Study on the constraint effect of natural vegetation on ecosystem services in the Shiyang River Basin[J]. Acta Ecologica Sinica,2020,40(9):2851 − 2862. (in Chinese with English abstract)
[16] LIU M, NIE Z L, CAO L, et al. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed[J]. Journal of Groundwater Science and Engineering,2021,9(4):326 − 340.
[17] LIU J T, SUN J C, ZHU L, et al. Analysis of groundwater environmental conditions and influencing factors in typical city in northwest China[J]. Journal of Groundwater Science and Engineering,2013,1(2):60 − 73.
[18] ZHANG C C, LI X Q, GAO M, et al. Exploitation of groundwater resources and protection of wetland in the Yuqia Basin[J]. Journal of Groundwater Science and Engineering,2017,5(3):222 − 234.
[19] HUANG F, OCHOA C G, CHEN X, et al. Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins[J]. Journal Hydrogeology,2021,593:125774.
[20] 刘深思, 徐贵青, 李彦, 等. 五种沙地灌木对地下水埋深变化的响应[J]. 生态学报,2021,41(2):615 − 625. [LIU Shensi, XU Guiqing, LI Yan, et al. Difference and consistency of responses of five sandy shrubs to changes in groundwater level in the Hailiutu River Basin[J]. Acta Ecologica Sinica,2021,41(2):615 − 625.
[21] FAN Y, MIGUEZ-MACHO G, JOBBÁGY E G, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences,2017,114(40):10572 − 10577. doi: 10.1073/pnas.1712381114
[22] 林玉英, 胡喜生, 邱荣祖, 等. 基于Landsat影像的NDVI对植被与影响因子交互耦合的响应[J]. 农业机械学报,2018,49(10):212 − 219. [LIN Yuying, HU Xisheng, QIU Rongzu, et al. Responses of landsat-based NDVI to interaction of vegetation and influencing factors[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):212 − 219. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2018.10.024
[23] 孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别:研究进展、面临挑战及未来研究展望[J]. 地质科技通报,2020,39(1):11 − 20. [SUN Ziyong, WANG Junyou, GE Mengyan, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11 − 20. (in Chinese with English abstract)
[24] 齐子萱, 周金龙, 季彦桢, 等. 西北内陆盆地降水入渗补给季节性变化—以新疆昌吉地下水均衡试验场为例[J]. 水文地质工程地质,2020,47(5):12 − 20. [QI Zixuan, ZHOU Jinlong, JI Yanzhen, et al. Seasonal variationin recharge of infiltration from precipitation for the inland basins of northwestern China:Taking the Changji groundwater balance test station in Xinjiang as an example[J]. Hydrogeology & Engineering Geology,2020,47(5):12 − 20. (in Chinese with English abstract)
[25] 阴晓伟, 吴一平, 赵文智, 等. 西北旱区潜在蒸散发的气候敏感性及其干旱特征研究[J]. 水文地质工程地质,2021,48(3):20 − 30. [YIN Xiaowei, WU Yiping, ZHAO Wenzhi, et al. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China[J]. Hydrogeology & Engineering Geology,2021,48(3):20 − 30. (in Chinese with English abstract)
[26] BOYER A, HATAT-FRAILE M, PASSEPORT E. Biogeochemical controls on strontium fate at the sediment-water interface of two groundwater-fed wetlands with contrasting hydrologic regimes[J]. Environmental Science & Technology,2018,52(15):8365 − 8372.
[27] HOSE G C, BAILEY J, STUMPP C, et al. Groundwater depth and topography correlate with vegetation structure of an upland peat swamp, Budderoo Plateau, NSW, Australia[J]. Ecohydrology,2015,7(5):1392 − 1402.
[28] SEN C, OZTURK O. The relationship between soil moisture and temperature vegetation on Kirklareli city Luleburgaz district a natural pasture vegetation[J]. International Journal of Environmental and Agriculture Research,2017,3(3):21 − 29.
[29] 李相虎. 石羊河流域2 ka来水资源演变及其影响因素[D]. 兰州: 兰州大学, 2006: 1 − 52
LI Xianghu. Water resourcese volution and its in fluencing factor during last 2000 years in the Shiyang River Basin[D]. Lanzhou: Lanzhou University, 2006: 1 − 52. (in Chinese with English abstract)