西藏谢通门县卡嘎地热成因与资源潜力分析

邹俊, 武斌, 马昭雄, 陈宁, 谢伟, 邹华敏, 杨代彬. 西藏谢通门县卡嘎地热成因与资源潜力分析[J]. 水文地质工程地质, 2023, 50(3): 207-216. doi: 10.16030/j.cnki.issn.1000-3665.202208003
引用本文: 邹俊, 武斌, 马昭雄, 陈宁, 谢伟, 邹华敏, 杨代彬. 西藏谢通门县卡嘎地热成因与资源潜力分析[J]. 水文地质工程地质, 2023, 50(3): 207-216. doi: 10.16030/j.cnki.issn.1000-3665.202208003
ZOU Jun, WU Bin, MA Zhaoxiong, CHEN Ning, XIE Wei, ZOU Huamin, YANG Daibin. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 207-216. doi: 10.16030/j.cnki.issn.1000-3665.202208003
Citation: ZOU Jun, WU Bin, MA Zhaoxiong, CHEN Ning, XIE Wei, ZOU Huamin, YANG Daibin. Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 207-216. doi: 10.16030/j.cnki.issn.1000-3665.202208003

西藏谢通门县卡嘎地热成因与资源潜力分析

  • 基金项目: 四川省财政厅资助科研项目(51000023Y000008290263)
详细信息
    作者简介: 邹俊(1983-),男,硕士,高级工程师,主要从事应用地球物理勘查工作。E-mail:164005911@qq.com
    通讯作者: 武斌(1972-),男,博士,教授级高级工程师,主要从事固体地球物理勘查与城市物探。E-mail:805784975@qq.com
  • 中图分类号: P314.1

Geothermal genesis and resource potential of Kaga in Xietongmen County in Tibet

More Information
  • 西藏谢通门县地处青藏高原高寒山区,分布有卡嘎温泉,开发地热能解决当地供暖之急,但地热成因及储量研究尚未开展。通过分析调查区的地质构造、地热活动规律,并在卡嘎温泉附近开展地质详细调查、音频大地电磁测深及土壤氡气测量等工作,综合运用地质、物探成果,对卡嘎温泉的成因及热储特征进行了探讨。研究结果表明:(1)音频大地电磁及土壤氡气测量成果清晰地揭示了区内NE向、NW向与SN向断层深部的延展情况与叠加关系,说明区内具备较好的导水通道和热储空间。(2)研究区热源以中浅部始~渐新世岩浆岩衰变放热及深部存在高温岩浆熔融热源向上传导;断裂破碎带既是深部热储,也是深部热水上涌的通道;第四系上部冲洪积等堆积层为地热水的良好盖层,而第四系下部松散沉积物及部分基岩风化壳构成区内浅部热储。这些说明本区地热应用潜力较大,但需要注意的是:依据音频大地电磁测深成果的三维展示,发现深部S1、S2两个异常区在浅部呈连通状态,地表温泉点正好位于其连通通道上方,故在附近钻探取水时需评估对此温泉点水量的影响。最后,结合本区地热水的地热特征及电性特征,构建了调查区“地球物理-地热地质”模型,可为西藏其他地区地热资源勘探开发提供借鉴和指导作用。

  • 加载中
  • 图 1  谢通门地区构造简图

    Figure 1. 

    图 2  申扎—谢通门—定结构造带温泉位置分布图

    Figure 2. 

    图 3  调查区综合地质图及物探测线布置图

    Figure 3. 

    图 4  L40线地质-物探成果综合解释图

    Figure 4. 

    图 5  土壤氡气测量平面等值线图

    Figure 5. 

    图 6  区内音频大地电磁成果三维立体图

    Figure 6. 

    图 7  低阻异常体位置三维立体图

    Figure 7. 

    图 8  区内地热成因“地球物理-地热地质”模型图

    Figure 8. 

  • [1]

    佟伟, 童铭陶, 章知非, 等. 西藏地热[M]. 北京: 科学出版社, 1981

    TONG Wei, TONG Mingtao, ZHANG Zhifei, et al. Tibet geothermal[M]. Beijing: Science Press, 1981. (in Chinese)

    [2]

    胡先才,索加,多吉. 西藏高温地热资源特征及开发远景分析[J]. 西藏地质,2002(2):80 − 85. [HU Xiancai,SUO Gia,DUO Ji. Analysis of characteristics and development prospects of high temperature geothermal resources in Tibet[J]. Geology of Tibet,2002(2):80 − 85. (in Chinese with English abstract)

    [3]

    蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312 − 321. [LIN Wenjing,LIU Zhiming,WANG Wanli,et al. The assessment of geothermal resources potential of China[J]. Geology in China,2013,40(1):312 − 321. (in Chinese with English abstract)

    [4]

    多吉. 典型高温地热系统:羊八井热田基本特征[J]. 中国工程科学,2003,5(1):42 − 47. [DUO Ji. The basic characteristics of the Yangbajing geothermal field:Typical high temperature geothermal system[J]. Engineering Science,2003,5(1):42 − 47. (in Chinese with English abstract)

    [5]

    龙登红,周小龙,杨坤光,等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质,2021,48(3):721 − 731. [LONG Denghong,ZHOU Xiaolong,YANG Kunguang,et al. Research on relationship between the deep structure and geothermal resource distribution in the Northeastern Tibetan Plateau[J]. Geology in China,2021,48(3):721 − 731. (in Chinese with English abstract)

    [6]

    吴中海,赵希涛,吴珍汉,等. 西藏当雄—羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报,2006,12(3):305 − 316. [WU Zhonghai,ZHAO Xitao,WU Zhenhan,et al. Quaternary geology and faulting in the Damxung—Yangbajain Basin,Southern Tibet[J]. Journal of Geomechanics,2006,12(3):305 − 316. (in Chinese with English abstract)

    [7]

    黄力军. 可控源音频大地电磁测深在西藏朗久地热田上的应用效果[J]. 工程地球物理学报,2020,17(4):457 − 461. [HUANG Lijun. Application effect of controlled source audio-frequency magnetotelluric sounding in geothermal field of Langjiu in Tibet[J]. Chinese Journal of Engineering Geophysics,2020,17(4):457 − 461. (in Chinese with English abstract)

    [8]

    马冰,贾凌霄,于洋,等. 世界地热能开发利用现状与展望[J]. 中国地质,2021,48(6):1734 − 1747. [MA Bing,JIA Lingxiao,YU Yang,et al. The development and utilization of geothermal energy in the world[J]. Geology in China,2021,48(6):1734 − 1747. (in Chinese with English abstract)

    [9]

    王晓翠,孙海龙,袁星芳. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质,2022,49(5):186 − 194. [WANG Xiaocui,SUN Hailong,YUAN Xingfang. A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area[J]. Hydrogeology & Engineering Geology,2022,49(5):186 − 194. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106049

    [10]

    安百州,曾昭发,闫照涛,等. 鄂尔多斯盆地西缘热储构造模式及地热资源分布特征[J]. 吉林大学学报(地球科学版),2022,52(4):1286 − 1301. [AN Baizhou,ZENG Zhaofa,YAN Zhaotao,et al. Thermal reservoir construction mode and distribution characteristics of geothermal resources in western margin of Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1286 − 1301. (in Chinese with English abstract)

    [11]

    邢一飞,王慧群,李捷,等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质,2022,49(6):1711 − 1722. [XING Yifei,WANG Huiqun,LI Jie,et al. Chemical field of geothermal water in Xiongan New Area and analysis of influencing factors[J]. Geology in China,2022,49(6):1711 − 1722. (in Chinese with English abstract)

    [12]

    李小林,吴国禄,雷玉德,等. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版),2016,46(1):220 − 229. [LI Xiaolin,WU Guolu,LEI Yude,et al. Suggestions for geothermal genetic mechanism and exploitation of Zhacang Temple geothermal energy in Guide County,Qinghai Province[J]. Journal of Jilin University (Earth Science Edition),2016,46(1):220 − 229. (in Chinese with English abstract)

    [13]

    李明辉,袁建飞,黄从俊,等. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质,2020,47(6):36 − 46. [LI Minghui,YUAN Jianfei,HUANG Congjun,et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’an in East Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(6):36 − 46. (in Chinese with English abstract)

    [14]

    李朝林,裴忠,金秀芹,等. 大地电磁测深应用于地热勘探[J]. 中国煤炭地质,2008,20(9):68 − 71. [LI Chaolin,PEI Zhong,JIN Xiuqin,et al. Magnetotelluric sounding used in geothermal exploration[J]. Coal Geology of China,2008,20(9):68 − 71. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.09.018

    [15]

    雷晓东,杨全合,李晨,等. 北京凤河营地热田东北部综合地球物理勘探[J]. 物探与化探,2017,41(2):249 − 255. [LEI Xiaodong,YANG Quanhe,LI Chen,et al. Integrated geophysical exploration in northeast Fengheying geothermal field,Beijing[J]. Geophysical and Geochemical Exploration,2017,41(2):249 − 255. (in Chinese with English abstract)

    [16]

    孙海川,刘永亮,邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探,2019,43(2):290 − 297. [SUN Haichuan,LIU Yongliang,SHAO Chenglong. The application of integrated geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration,2019,43(2):290 − 297. (in Chinese with English abstract)

    [17]

    张炯,黄少鹏,傅饶,等. 大地电磁测深在火山区地热研究中的应用[J]. 岩石学报,2017,33(1):279 − 290. [ZHANG Jiong,HUANG Shaopeng,FU Rao,et al. Application of magnetotellurics in geothermal exploration and research in volcano areas[J]. Acta Petrologica Sinica,2017,33(1):279 − 290. (in Chinese with English abstract)

    [18]

    裴发根,张小博,王绪本,等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用:以HLD1井为例[J]. 地球物理学进展,2021,36(4):1432 − 1442. [PEI Fagen,ZHANG Xiaobo,WANG Xuben,et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar area:Take the well HLD1 as an example[J]. Progress in Geophysics,2021,36(4):1432 − 1442. (in Chinese with English abstract)

    [19]

    国家地震局地质研究所. 西藏中部活动断层[M]. 北京: 地震出版社, 1992

    Institute of Geology, China Earthquake Administratration. Active faults in the central Tibet[M]. Beijing: Seismological Press, 1992. (in Chinese)

    [20]

    干成. 中国西藏的活动断层和构造[J]. 地质地球化学,1980,8(3):46 − 52. [GAN Cheng. Active faults and structures in Tibet,China[J]. Geology-Geochemistry,1980,8(3):46 − 52. (in Chinese with English abstract)

    [21]

    王鹏,陈晓宏,沈立成,等. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质,2016,43(4):1429 − 1438. [WANG Peng,CHEN Xiaohong,SHEN Licheng,et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China,2016,43(4):1429 − 1438. (in Chinese with English abstract)

    [22]

    李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院, 2002

    LI Zhenqing. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau[D]. Beijing: Chinese Academy of Geological Sciences, 2002. (in Chinese with English abstract)

    [23]

    朱菲菲. 雅鲁藏布江中游谢通门南北向活动断裂带特征及工程效应研究[D]. 成都: 成都理工大学, 2008

    ZHU Feifei. The research of the north-south active fault belt in Xiatongmoin in the middle reaches of the Yarlung Zangbo River and effection engineering[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)

    [24]

    徐心悦. 藏南申扎—定结断裂系卡达正断裂晚第四纪活动性及其环境效应[D]. 北京: 中国地震局地质研究所, 2019

    XU Xinyue. Late quaternary activity and its environmental effects of the N-S trend kharta fault in Xainza— Dinggye rift, Southern Tibet[D]. Beijing: Institute of geology, China Seismological Bureau, 2019. (in Chinese with English abstract)

    [25]

    李才,翟庆国,徐锋,等. 西藏查藏错-申扎南北向活动构造带运动学特点[J]. 地质论评,2005,51(4):353 − 359. [LI Cai,ZHAI Qingguo,XU Feng,et al. Kinematics of the active north-south-trending Chazangco— Xainza tectonic belt,Xizang (Tibet)[J]. Geological Review,2005,51(4):353 − 359. (in Chinese with English abstract)

    [26]

    李应栩,谢玉玲,李光明,等. 西藏申扎—定结南北向构造中段斑岩锆石U-Pb年代学研究[J]. 河北地质大学学报,2018,41(6):25 − 32. [LI Yingxu,XIE Yuling,LI Guangming,et al. U-Pb geochronology study of zircon from porphyry in middle section of Xainza— Dinggye north-south trending structure[J]. Journal of Hebei GEO University,2018,41(6):25 − 32. (in Chinese with English abstract)

    [27]

    张进江,郭磊,丁林. 申扎-定结正断层体系中、南段构造特征及其与藏南拆离系的关系[J]. 科学通报,2002,47(10):738 − 743. [ZHANG Jinjiang,GUO Lei,DING Lin. Structural characteristics of the middle and south section of Xainza—Dinggye normal fault system and its relationship with the detachment system in Southern Tibet[J]. Chinese Science Bulletin,2002,47(10):738 − 743. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.2002.10.003

    [28]

    杨照应. 西藏谢通门县查布地热田地热流体地球化学特征[D]. 拉萨: 西藏大学, 2022

    YANG Zhaoying. Geochemical characteristics of geothermal fluids in Chabu geothermal field, Xietongmen County, Tibet[D]. Lasa: Tibet University, 2022. (in Chinese with English abstract)

    [29]

    张萌,蔺文静,刘昭,等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版),2014,41(3):382 − 392. [ZHANG Meng,LIN Wenjing,LIU Zhao,et al. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):382 − 392. (in Chinese with English abstract)

    [30]

    刘昭,蔺文静,张萌,等. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘,2014,21(6):356 − 371. [LIU Zhao,LIN Wenjing,ZHANG Meng,et al. Geothermal fluid genesis and mantle fluids contributions in Nimu—Naqu,Tibet[J]. Earth Science Frontiers,2014,21(6):356 − 371. (in Chinese with English abstract)

    [31]

    章旭,郝红兵,刘康林,等. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制[J]. 中国地质,2020,47(6):1702 − 1714. [ZHANG Xu,HAO Hongbing,LIU Kanglin,et al. Hydrogeochemical characteristics and genetic model of Oiga Graben geothermal waters system in Tibet[J]. Geology in China,2020,47(6):1702 − 1714. (in Chinese with English abstract) doi: 10.12029/gc20200608

    [32]

    王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract)

    [33]

    余传涛,刘鸿福,张新军. 测氡法用于隐伏断层探测的实验研究[J]. 勘探地球物理进展,2010,33(5):332 − 335. [YU Chuantao,LIU Hongfu,ZHANG Xinjun. Experimental study of buried fault detection by radon measurements[J]. Progress in Exploration Geophysics,2010,33(5):332 − 335. (in Chinese with English abstract)

    [34]

    SHENG Yue, JIN Sheng, COMEAU M J, et al. Lithospheric structure near the Northern Xainza—Dinggye Rift, Tibetan Plateau—Implications for rheology and tectonic dynamics[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2020JB0214 42.

    [35]

    张云辉,李晓,徐正宣,等. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质,2021,48(5):46 − 53. [ZHANG Yunhui,LI Xiao,XU Zhengxuan,et al. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan—Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):46 − 53. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202104007

  • 加载中

(8)

计量
  • 文章访问数:  855
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2022-08-02
修回日期:  2022-08-22
录用日期:  2022-11-08
刊出日期:  2023-05-15

目录