-
摘要:
西藏谢通门县地处青藏高原高寒山区,分布有卡嘎温泉,开发地热能解决当地供暖之急,但地热成因及储量研究尚未开展。通过分析调查区的地质构造、地热活动规律,并在卡嘎温泉附近开展地质详细调查、音频大地电磁测深及土壤氡气测量等工作,综合运用地质、物探成果,对卡嘎温泉的成因及热储特征进行了探讨。研究结果表明:(1)音频大地电磁及土壤氡气测量成果清晰地揭示了区内NE向、NW向与SN向断层深部的延展情况与叠加关系,说明区内具备较好的导水通道和热储空间。(2)研究区热源以中浅部始~渐新世岩浆岩衰变放热及深部存在高温岩浆熔融热源向上传导;断裂破碎带既是深部热储,也是深部热水上涌的通道;第四系上部冲洪积等堆积层为地热水的良好盖层,而第四系下部松散沉积物及部分基岩风化壳构成区内浅部热储。这些说明本区地热应用潜力较大,但需要注意的是:依据音频大地电磁测深成果的三维展示,发现深部S1、S2两个异常区在浅部呈连通状态,地表温泉点正好位于其连通通道上方,故在附近钻探取水时需评估对此温泉点水量的影响。最后,结合本区地热水的地热特征及电性特征,构建了调查区“地球物理-地热地质”模型,可为西藏其他地区地热资源勘探开发提供借鉴和指导作用。
Abstract:Xietongmen County is located in the alpine mountain area of the Qinghai-Tibet Plateau, where the Kaga hot spring occurs. Geothermal energy is expected to be developed to solve the local heating problem, but research on the genesis and reserves of geothermal energy has not been carried out. By analyzing the geological structure and geothermal activity law of the survey area, and carrying out detailed geological survey, audio frequency magnetotelluric sounding and soil radon measurement near the Kaga hot spring, this paper discusses the genesis and thermal reservoir characteristics of ths Kaga hot spring by comprehensively using geological and geophysical exploration data. The research results show that (1) the audio frequency magnetotelluric and soil radon measurement results clearly reveal the extension and superposition relationship of the deep NE, NW and SN trending faults in the area, indicating that the area has a good permeable channel and thermal storage space. (2) The heat source in the study area is composed of the middle and shallow Eocene Oligocene magmatic rock decay exothermic heat source and the deep high-temperature magmatic melting heat source. The fracture zone is not only a deep thermal reservoir, but also a channel for the upwelling of deep hot water. The alluvial proluvial and other accumulative layers in the upper part of the Quaternary system are good caprocks of geothermal water, while the unconsolidated sediments in the lower part of the Quaternary system and some bedrock weathering crusts constitute shallow geothermal reservoirs in the area. These indicate that the geothermal application potential in this area is large, but it should be noted that, according to the three-dimensional display of audio frequency magnetotelluric sounding results, it is found that the deep S1 and S2 abnormal areas are connected at the shallow part, and the surface hot spring vent is just above its connecting channel, so the impact of the water volume of this hot spring vent needs to be evaluated when drilling water nearby. Finally, combined with the geothermal characteristics and electrical characteristics of geothermal water in this area, the “geophysical geothermal geology” model of the survey area is constructed, providing reference and guidance for the exploration and development of geothermal resources in other regions of Tibet.
-
[1] 佟伟, 童铭陶, 章知非, 等. 西藏地热[M]. 北京: 科学出版社, 1981
TONG Wei, TONG Mingtao, ZHANG Zhifei, et al. Tibet geothermal[M]. Beijing: Science Press, 1981. (in Chinese)
[2] 胡先才,索加,多吉. 西藏高温地热资源特征及开发远景分析[J]. 西藏地质,2002(2):80 − 85. [HU Xiancai,SUO Gia,DUO Ji. Analysis of characteristics and development prospects of high temperature geothermal resources in Tibet[J]. Geology of Tibet,2002(2):80 − 85. (in Chinese with English abstract)
[3] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312 − 321. [LIN Wenjing,LIU Zhiming,WANG Wanli,et al. The assessment of geothermal resources potential of China[J]. Geology in China,2013,40(1):312 − 321. (in Chinese with English abstract)
[4] 多吉. 典型高温地热系统:羊八井热田基本特征[J]. 中国工程科学,2003,5(1):42 − 47. [DUO Ji. The basic characteristics of the Yangbajing geothermal field:Typical high temperature geothermal system[J]. Engineering Science,2003,5(1):42 − 47. (in Chinese with English abstract)
[5] 龙登红,周小龙,杨坤光,等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质,2021,48(3):721 − 731. [LONG Denghong,ZHOU Xiaolong,YANG Kunguang,et al. Research on relationship between the deep structure and geothermal resource distribution in the Northeastern Tibetan Plateau[J]. Geology in China,2021,48(3):721 − 731. (in Chinese with English abstract)
[6] 吴中海,赵希涛,吴珍汉,等. 西藏当雄—羊八井盆地的第四纪地质与断裂活动研究[J]. 地质力学学报,2006,12(3):305 − 316. [WU Zhonghai,ZHAO Xitao,WU Zhenhan,et al. Quaternary geology and faulting in the Damxung—Yangbajain Basin,Southern Tibet[J]. Journal of Geomechanics,2006,12(3):305 − 316. (in Chinese with English abstract)
[7] 黄力军. 可控源音频大地电磁测深在西藏朗久地热田上的应用效果[J]. 工程地球物理学报,2020,17(4):457 − 461. [HUANG Lijun. Application effect of controlled source audio-frequency magnetotelluric sounding in geothermal field of Langjiu in Tibet[J]. Chinese Journal of Engineering Geophysics,2020,17(4):457 − 461. (in Chinese with English abstract)
[8] 马冰,贾凌霄,于洋,等. 世界地热能开发利用现状与展望[J]. 中国地质,2021,48(6):1734 − 1747. [MA Bing,JIA Lingxiao,YU Yang,et al. The development and utilization of geothermal energy in the world[J]. Geology in China,2021,48(6):1734 − 1747. (in Chinese with English abstract)
[9] 王晓翠,孙海龙,袁星芳. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质,2022,49(5):186 − 194. [WANG Xiaocui,SUN Hailong,YUAN Xingfang. A study of the hydrochemical characteristics and geothermal water of typical granite geothermal reservoir in the Jiaodong area[J]. Hydrogeology & Engineering Geology,2022,49(5):186 − 194. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202106049
[10] 安百州,曾昭发,闫照涛,等. 鄂尔多斯盆地西缘热储构造模式及地热资源分布特征[J]. 吉林大学学报(地球科学版),2022,52(4):1286 − 1301. [AN Baizhou,ZENG Zhaofa,YAN Zhaotao,et al. Thermal reservoir construction mode and distribution characteristics of geothermal resources in western margin of Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1286 − 1301. (in Chinese with English abstract)
[11] 邢一飞,王慧群,李捷,等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质,2022,49(6):1711 − 1722. [XING Yifei,WANG Huiqun,LI Jie,et al. Chemical field of geothermal water in Xiongan New Area and analysis of influencing factors[J]. Geology in China,2022,49(6):1711 − 1722. (in Chinese with English abstract)
[12] 李小林,吴国禄,雷玉德,等. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版),2016,46(1):220 − 229. [LI Xiaolin,WU Guolu,LEI Yude,et al. Suggestions for geothermal genetic mechanism and exploitation of Zhacang Temple geothermal energy in Guide County,Qinghai Province[J]. Journal of Jilin University (Earth Science Edition),2016,46(1):220 − 229. (in Chinese with English abstract)
[13] 李明辉,袁建飞,黄从俊,等. 四川广安铜锣山背斜热储性质及地热成因模式[J]. 水文地质工程地质,2020,47(6):36 − 46. [LI Minghui,YUAN Jianfei,HUANG Congjun,et al. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang’an in East Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(6):36 − 46. (in Chinese with English abstract)
[14] 李朝林,裴忠,金秀芹,等. 大地电磁测深应用于地热勘探[J]. 中国煤炭地质,2008,20(9):68 − 71. [LI Chaolin,PEI Zhong,JIN Xiuqin,et al. Magnetotelluric sounding used in geothermal exploration[J]. Coal Geology of China,2008,20(9):68 − 71. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.09.018
[15] 雷晓东,杨全合,李晨,等. 北京凤河营地热田东北部综合地球物理勘探[J]. 物探与化探,2017,41(2):249 − 255. [LEI Xiaodong,YANG Quanhe,LI Chen,et al. Integrated geophysical exploration in northeast Fengheying geothermal field,Beijing[J]. Geophysical and Geochemical Exploration,2017,41(2):249 − 255. (in Chinese with English abstract)
[16] 孙海川,刘永亮,邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探,2019,43(2):290 − 297. [SUN Haichuan,LIU Yongliang,SHAO Chenglong. The application of integrated geophysical exploration to geothermal exploration in Haishiwan area[J]. Geophysical and Geochemical Exploration,2019,43(2):290 − 297. (in Chinese with English abstract)
[17] 张炯,黄少鹏,傅饶,等. 大地电磁测深在火山区地热研究中的应用[J]. 岩石学报,2017,33(1):279 − 290. [ZHANG Jiong,HUANG Shaopeng,FU Rao,et al. Application of magnetotellurics in geothermal exploration and research in volcano areas[J]. Acta Petrologica Sinica,2017,33(1):279 − 290. (in Chinese with English abstract)
[18] 裴发根,张小博,王绪本,等. 综合地球物理勘探在齐齐哈尔地区低温地热系统调查中的应用:以HLD1井为例[J]. 地球物理学进展,2021,36(4):1432 − 1442. [PEI Fagen,ZHANG Xiaobo,WANG Xuben,et al. Application in geothermal survey of low temperature system by integrated geophysical exploration in the Qiqihar area:Take the well HLD1 as an example[J]. Progress in Geophysics,2021,36(4):1432 − 1442. (in Chinese with English abstract)
[19] 国家地震局地质研究所. 西藏中部活动断层[M]. 北京: 地震出版社, 1992
Institute of Geology, China Earthquake Administratration. Active faults in the central Tibet[M]. Beijing: Seismological Press, 1992. (in Chinese)
[20] 干成. 中国西藏的活动断层和构造[J]. 地质地球化学,1980,8(3):46 − 52. [GAN Cheng. Active faults and structures in Tibet,China[J]. Geology-Geochemistry,1980,8(3):46 − 52. (in Chinese with English abstract)
[21] 王鹏,陈晓宏,沈立成,等. 西藏地热异常区热储温度及其地质环境效应[J]. 中国地质,2016,43(4):1429 − 1438. [WANG Peng,CHEN Xiaohong,SHEN Licheng,et al. Reservoir temperature of geothermal anomaly area and its environmental effect in Tibet[J]. Geology in China,2016,43(4):1429 − 1438. (in Chinese with English abstract)
[22] 李振清. 青藏高原碰撞造山过程中的现代热水活动[D]. 北京: 中国地质科学院, 2002
LI Zhenqing. Present hydrothermal activities during collisional orogenics of the Tibetan Plateau[D]. Beijing: Chinese Academy of Geological Sciences, 2002. (in Chinese with English abstract)
[23] 朱菲菲. 雅鲁藏布江中游谢通门南北向活动断裂带特征及工程效应研究[D]. 成都: 成都理工大学, 2008
ZHU Feifei. The research of the north-south active fault belt in Xiatongmoin in the middle reaches of the Yarlung Zangbo River and effection engineering[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)
[24] 徐心悦. 藏南申扎—定结断裂系卡达正断裂晚第四纪活动性及其环境效应[D]. 北京: 中国地震局地质研究所, 2019
XU Xinyue. Late quaternary activity and its environmental effects of the N-S trend kharta fault in Xainza— Dinggye rift, Southern Tibet[D]. Beijing: Institute of geology, China Seismological Bureau, 2019. (in Chinese with English abstract)
[25] 李才,翟庆国,徐锋,等. 西藏查藏错-申扎南北向活动构造带运动学特点[J]. 地质论评,2005,51(4):353 − 359. [LI Cai,ZHAI Qingguo,XU Feng,et al. Kinematics of the active north-south-trending Chazangco— Xainza tectonic belt,Xizang (Tibet)[J]. Geological Review,2005,51(4):353 − 359. (in Chinese with English abstract)
[26] 李应栩,谢玉玲,李光明,等. 西藏申扎—定结南北向构造中段斑岩锆石U-Pb年代学研究[J]. 河北地质大学学报,2018,41(6):25 − 32. [LI Yingxu,XIE Yuling,LI Guangming,et al. U-Pb geochronology study of zircon from porphyry in middle section of Xainza— Dinggye north-south trending structure[J]. Journal of Hebei GEO University,2018,41(6):25 − 32. (in Chinese with English abstract)
[27] 张进江,郭磊,丁林. 申扎-定结正断层体系中、南段构造特征及其与藏南拆离系的关系[J]. 科学通报,2002,47(10):738 − 743. [ZHANG Jinjiang,GUO Lei,DING Lin. Structural characteristics of the middle and south section of Xainza—Dinggye normal fault system and its relationship with the detachment system in Southern Tibet[J]. Chinese Science Bulletin,2002,47(10):738 − 743. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.2002.10.003
[28] 杨照应. 西藏谢通门县查布地热田地热流体地球化学特征[D]. 拉萨: 西藏大学, 2022
YANG Zhaoying. Geochemical characteristics of geothermal fluids in Chabu geothermal field, Xietongmen County, Tibet[D]. Lasa: Tibet University, 2022. (in Chinese with English abstract)
[29] 张萌,蔺文静,刘昭,等. 西藏谷露高温地热系统水文地球化学特征及成因模式[J]. 成都理工大学学报(自然科学版),2014,41(3):382 − 392. [ZHANG Meng,LIN Wenjing,LIU Zhao,et al. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2014,41(3):382 − 392. (in Chinese with English abstract)
[30] 刘昭,蔺文静,张萌,等. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘,2014,21(6):356 − 371. [LIU Zhao,LIN Wenjing,ZHANG Meng,et al. Geothermal fluid genesis and mantle fluids contributions in Nimu—Naqu,Tibet[J]. Earth Science Frontiers,2014,21(6):356 − 371. (in Chinese with English abstract)
[31] 章旭,郝红兵,刘康林,等. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制[J]. 中国地质,2020,47(6):1702 − 1714. [ZHANG Xu,HAO Hongbing,LIU Kanglin,et al. Hydrogeochemical characteristics and genetic model of Oiga Graben geothermal waters system in Tibet[J]. Geology in China,2020,47(6):1702 − 1714. (in Chinese with English abstract) doi: 10.12029/gc20200608
[32] 王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923 − 1937. [WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923 − 1937. (in Chinese with English abstract)
[33] 余传涛,刘鸿福,张新军. 测氡法用于隐伏断层探测的实验研究[J]. 勘探地球物理进展,2010,33(5):332 − 335. [YU Chuantao,LIU Hongfu,ZHANG Xinjun. Experimental study of buried fault detection by radon measurements[J]. Progress in Exploration Geophysics,2010,33(5):332 − 335. (in Chinese with English abstract)
[34] SHENG Yue, JIN Sheng, COMEAU M J, et al. Lithospheric structure near the Northern Xainza—Dinggye Rift, Tibetan Plateau—Implications for rheology and tectonic dynamics[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2020JB0214 42.
[35] 张云辉,李晓,徐正宣,等. 川藏铁路康定隧址区地热水成因及其工程影响分析[J]. 水文地质工程地质,2021,48(5):46 − 53. [ZHANG Yunhui,LI Xiao,XU Zhengxuan,et al. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan—Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):46 − 53. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202104007