氢氧同位素在地下水流系统的重分布:从高程效应到深度效应

韩鹏飞, 王旭升, 蒋小伟, 万力. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质, 2023, 50(2): 1-12. doi: 10.16030/j.cnki.issn.1000-3665.202211053
引用本文: 韩鹏飞, 王旭升, 蒋小伟, 万力. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质, 2023, 50(2): 1-12. doi: 10.16030/j.cnki.issn.1000-3665.202211053
HAN Pengfei, WANG Xusheng, JIANG Xiaowei, WAN Li. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 1-12. doi: 10.16030/j.cnki.issn.1000-3665.202211053
Citation: HAN Pengfei, WANG Xusheng, JIANG Xiaowei, WAN Li. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 1-12. doi: 10.16030/j.cnki.issn.1000-3665.202211053

氢氧同位素在地下水流系统的重分布:从高程效应到深度效应

  • 基金项目: 国家自然科学基金项目(41772249;42172270)
详细信息
    作者简介: 韩鹏飞(1988-),男,博士,讲师,主要从事地下水循环的研究工作。E-mail:pfhan@cugb.edu.cn
    通讯作者: 王旭升(1974-),男,博士,教授,主要从事地下水循环的研究工作。E-mail:wxsh@cugb.edu.cn
  • 中图分类号: P641.2

Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect

More Information
  • 大气降水的氢氧同位素含量具有高程效应,降水入渗后参与地下水循环,其高程效应如何受地下水流系统的影响转化为地下水氢氧同位素的深度效应?现有研究对于这个问题缺少定量认识。文章构建单向倾斜盆地和双峰波状盆地的稳态地下水循环理论模型,采用MODFLOW模拟剖面二维地下水流场、采用MT3DMS模拟重同位素分子的对流-弥散过程,得到地下水D和18O含量的空间分布,探讨了氢氧同位素高程效应在地下水流系统转化为深度效应的机理。结果表明:在单斜盆地,补给区大气降水D和18O含量的高程效应转化为排泄区地下水δD和δ18O值随埋深增大而指数型衰减的深度效应;在双峰波状盆地,当含水层渗透性相对入渗强度较大时(K0/w=1000),仅发育一个区域地下水流系统,在区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线分布;当含水层渗透性相对入渗强度较小时(K0/w=250),双峰波状盆地发育多个局部地下水流系统,区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线,而局部地下水排泄区的δD和δ18O随深度增加呈单调衰减趋势。本研究从理论上推进了地下水流系统对溶质运移影响机理的认识,揭示了氢氧同位素对地下水流系统的指示作用。

  • 加载中
  • 图 1  大气降水同位素高程效应与地下水同位素深度效应示意图

    Figure 1. 

    图 2  算例情景Case-I模拟结果

    Figure 2. 

    图 3  算例情景Case-II模拟结果

    Figure 3. 

    图 4  算例情景Case-III模拟结果

    Figure 4. 

    图 5  泉点处地下水氢氧同位素模拟结果随纵向弥散度的变化

    Figure 5. 

    表 1  不同模拟情景的控制参数

    Table 1.  Control parameters in different simulation scenarios

    参数模拟情景
    Case-ICase-IICase-III
    地貌
    形态
    z0/m100500500
    Δzm/m1200800800
    Δzf /m0400400
    其它L=12 km,zD= −400 m
    渗透性K0 / (m·d−11.001.000.25
    其它Kh/Kv=10,βk =0.002 m−1
    补给与排泄w=0.001 m/d,Cd =0.1 d−1
    孔隙度ϕ0=0.2,βp =0.001 m−1
    弥散参数αL=20 m,αT=2 m,D0=0.0063 m2/d
    同位素Dδ*D= −50.0‰, ηD=0.0300 m−1
    同位素18Oδ*18O= −7.5‰, ηO=0.0038 m−1
    下载: 导出CSV
  • [1]

    顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011

    GU Weizu. Isotope hydrology[M]. Beijing: Science Press, 2011. (in Chinese)

    [2]

    周训, 金晓媚, 梁四海. 地下水科学专论: 彩色版[M]. 2版. 北京: 地质出版社, 2017

    ZHOU Xun, JIN Xiaomei, LIANG Sihai. Monographs on groundwater science: color edition[M]. 2nd ed. Beijing: Geological Publishing House, 2017. (in Chinese)

    [3]

    JIANG Wanjun,WANG Guangcai,SHENG Yizhi,et al. Isotopes in groundwater (2H,18O,14C) revealed the climate and groundwater recharge in the Northern China[J]. Science of the Total Environment,2019,666:298 − 307. doi: 10.1016/j.scitotenv.2019.02.245

    [4]

    AYADI R,TRABELSI R,ZOUARI K,et al. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O,2H,3H,14C) and chemical tracers:A case study of the intermediate aquifer,Sfax,southeastern Tunisia[J]. Hydrogeology Journal,2018,26(4):983 − 1007. doi: 10.1007/s10040-017-1702-1

    [5]

    王忠亮,郭春艳,张彦鹏. 涞源北盆地地下水氢氧同位素特征及北海泉形成模式[J]. 水文地质工程地质,2021,48(1):27 − 35. [WANG Zhongliang,GUO Chunyan,ZHANG Yanpeng. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology,2021,48(1):27 − 35. (in Chinese with English abstract)

    [6]

    龚自珍. 锦屏水电工程区岩溶水文地质研究中氢氧同位素的应用[J]. 中国岩溶,1996,15(1/2):195 − 205. [GONG Zizhen. Application of hydrogen oxygen isotopes in karst hydrogeology of the Jinping hydropower station[J]. Carsologica Sinica,1996,15(1/2):195 − 205. (in Chinese)

    [7]

    TÓTH J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research,1963,68(16):4795 − 4812. doi: 10.1029/JZ068i016p04795

    [8]

    蒋小伟, 万力, 王旭升. 区域地下水流理论进展[M]. 北京: 地质出版社, 2013

    JIANG Xiaowei, WAN Li, WANG Xusheng. Advances in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013. (in Chinese)

    [9]

    梁杏, 张人权, 靳孟贵. 地下水流系统: 理论应用调查[M]. 北京: 地质出版社, 2015

    LIANG Xing, ZHANG Renquan, JIN Menggui. Grounduater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015. (in Chinese)

    [10]

    张之淦,张洪平,孙继朝,等. 河北平原第四系地下水年龄、水流系统及咸水成因初探—石家庄至渤海湾同位素水文地质剖面研究[J]. 水文地质工程地质,1987,14(4):1 − 6. [ZHANG Zhigan,ZHANG Hongping,SUN Jichao, et al. Environmental isotope study related to groundwater age,flow system and saline waterorigin in quaternary aquifer of Hebei plain[J]. Hydrogeology & Engineering Geology,1987,14(4):1 − 6. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.1987.04.002

    [11]

    TÓTH J. Groundwater as a geologic agent:An overview of the causes,processes,and manifestations[J]. Hydrogeology Journal,1999,7(1):1 − 14. doi: 10.1007/s100400050176

    [12]

    张人权,梁杏,靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘,2013,20(3):217 − 226. [ZHANG Renquan,LIANG Xing,JIN Menggui. The evolution of groundwater flow systems in the Quaternary of Hebei Plain since the Last Glacial Maximum[J]. Earth Science Frontiers,2013,20(3):217 − 226. (in Chinese with English abstract)

    [13]

    万力,王旭升,蒋小伟. 地下水循环结构的动力学研究进展[J]. 地质科技通报,2022,41(1):19 − 29. [WAN Li,WANG Xusheng,JIANG Xiaowei. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology,2022,41(1):19 − 29. (in Chinese with English abstract)

    [14]

    李舒,杨佳雪,李小倩,等. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报,2022,41(1):309 − 318. [LI Shu,YANG Jiaxue,LI Xiaoqian,et al. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology,2022,41(1):309 − 318. (in Chinese with English abstract)

    [15]

    王恒. 基于水化学演化规律的盆地地下水循环研究[D]. 北京: 中国地质大学(北京), 2016

    WANG Heng. A methodological study on the hydrogeochemical characterization of hierarchically nested groundwater flow systems[D]. Beijing: China University of Geosciences(Beijing), 2016. (in Chinese with English abstract)

    [16]

    WANG Heng,JIANG Xiaowei,WAN Li,et al. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology,2015,527:433 − 441. doi: 10.1016/j.jhydrol.2015.04.063

    [17]

    王振,郭华明,刘海燕,等. 玛曲高原区潜水水化学和氢氧同位素特征[J]. 水文地质工程地质,2021,48(1):18 − 26. [WANG Zhen,GUO Huaming,LIU Haiyan,et al. Hydrochemical and hydrogen and oxygen isotope characteristics of subsurface water in the Maqu Plateau[J]. Hydrogeology & Engineering Geology,2021,48(1):18 − 26. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201912013

    [18]

    KRABBENHOFT D P,ANDERSON M P,BOWSER C J. Estimating groundwater exchange with lakes:2. Calibration of a three-dimensional,solute transport model to a stable isotope plume[J]. Water Resources Research,1990,26(10):2455 − 2462.

    [19]

    SHURBAJI A R M,PHILLIPS F M. A numerical model for the movement of H2O,H218O,and 2HHO in the unsaturated zone[J]. Journal of Hydrology,1995,171(1/2):125 − 142.

    [20]

    BRAUD I,BARIAC T,GAUDET J P,et al. SiSPAT-Isotope,a coupled heat,water and stable isotope (HDO and H218O) transport model for bare soil. Part I. Model description and first verifications[J]. Journal of Hydrology,2005,309(1/2/3/4):277 − 300.

    [21]

    CASCHETTO M,COLOMBANI N,MASTROCICCO M,et al. Estimating groundwater residence time and recharge patterns in a saline coastal aquifer[J]. Hydrological Processes,2016,30(22):4202 − 4213. doi: 10.1002/hyp.10942

    [22]

    JIANG Zhenjiao,XU Tianfu,MALLANTS D,et al. Numerical modelling of stable isotope (2H and 18O) transport in a hydro-geothermal system:Model development and implementation to the Guide Basin,China[J]. Journal of Hydrology,2019,569:93 − 105. doi: 10.1016/j.jhydrol.2018.11.065

    [23]

    那金,姜雪,姜振蛟. 康定-老榆林地热系统氢氧同位素迁移数值模拟分析[J]. 地球科学,2021,46(7):2646 − 2656. [NA Jin,JIANG Xue,JIANG Zhenjiao. Numerical modelling of stable isotope transport processes in a hydrogeothermal system of Kangding-laoyuling area[J]. Earth Science,2021,46(7):2646 − 2656. (in Chinese with English abstract)

    [24]

    陈崇希, 林敏, 成建梅. 地下水动力学[M]. 5版. 北京: 地质出版社, 2011

    CHEN Chongxi, LIN Min, CHENG Jianmei. Groundwater hydraulics[M]. 5th ed. Beijing: Geological Publishing House, 2011. (in Chinese with English abstract)

    [25]

    GONFIANTINI R. Standards for stable isotope measurements in natural compounds[J]. Nature,1978,271(5645):534 − 536. doi: 10.1038/271534a0

    [26]

    BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier Pub. Co, 1972.

    [27]

    ZHENG C, WANG P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems: Documentation and user’s guide[R]. Birmingham: University of Alabama, 1999.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1027
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2022-11-07
修回日期:  2022-12-20
刊出日期:  2023-03-15

目录