-
摘要:
辉锑矿(Sb2S3)的氧化溶解是控制锑(Sb)从岩矿中释放进入水土环境并影响其迁移转化的首要过程。酸性矿山废水中的三价铁[Fe(III)]是矿区环境中广泛存在的天然氧化剂,然而Fe(III)对Sb2S3的氧化溶解与Sb的释放作用机制尚不明确。通过模拟黑暗缺氧酸性的矿山地下水环境,开展Fe(III)浓度与Sb2S3表面积比值(I)控制的Sb2S3氧化溶解动力学实验,结合S-Sb-Fe氧化还原作用产物的溶解态组成与固相表征手段,揭示Fe(III)对Sb释放的作用机制。结果显示:Fe(III)作用下Sb2S3的氧化溶解是一个产酸的过程,I值越大,Fe(III)对Sb释放的促进作用越明显。缺氧条件下,Fe(III)与Sb2S3发生氧化还原作用,主要产物是五价锑[Sb(V)]、硫单质[S(0)]和二价铁[Fe(Ⅱ)],反应后矿物表面有S(0)和Fe2O3检出,阻碍了Sb2S3氧化溶解反应的持续进行。 I值一定时,低浓度的Fe(III)和溶解氧(DO)质量浓度的增加均会减少矿物表面S(0)的附着量,促进Sb释放量的增加;溶液中的Cl−通过配位络合效应会促进Sb2S3的溶解释放。缺氧酸性条件下Fe(III)与Sb2S3的作用控制着Sb的释放。研究结果可为矿山闭坑后地下水Sb污染防治提供重要的理论依据。
Abstract:Oxidative dissolution of stibnite (Sb2S3) is the primary process that controls the release of antimony (Sb) from rock and ore into the soil and water environment and affects its transport and transformation. Fe(III) in acid mine wastewater is a widespread natural oxidant in the mine environment. However, the role of Fe(III) on the oxidative dissolution of Sb2S3 and Sb release is unknown. By simulating a dark anoxic and acidic mine groundwater environment, this study conducted Fe(III) concentration to Sb2S3 surface area ratio (I) controlled Sb2S3 oxidative dissolution kinetics experiments, and combined the dissolved state composition and solid phase characterization means of S-Sb-Fe redox products to reveal the mechanism of Fe(III) action on Sb release. The results show that the oxidative dissolution of Sb2S3 under the action of Fe(III) is an acid-producing process, and the larger the I value is, the more obvious the promotion effect of Fe(III) on Sb release. Under anoxic conditions, Fe(III) undergoes redox with Sb2S3, and the main products are Sb(V), S(0) and Fe(II). After the reaction, S(0) and Fe2O3 were detected on the mineral surface, which hindered the continuation of the oxidative dissolution reaction of Sb2S3. At a certain value of I, both the low concentration of Fe(III) and the increase of dissolved oxygen (DO) will reduce the attachment of S(0) on the mineral surface and promote the increase of Sb release; the Cl− in solution will promote the dissolution release of Sb2S3 through the coordination complexation effect. The interaction between Fe(III) and Sb2S3 under anoxic acidic conditions controls the release of Sb, which can provide an important theoretical basis for prevention and control of groundwater Sb contamination after mine pit closure.
-
Key words:
- stibnite /
- Fe(III) /
- antimony release /
- oxidation dissolution /
- anoxic acid conditions /
- mine environment
-
-
表 1 实验参数设置
Table 1. Experimental parameter setting
组别 编号 c[Fe(III)]
/(mmol·L−1)I/(mmol·m−2) 反应条件 A组 A1 1.0 0.01 ρ(DO)=0.2 mg/L,
添加FeCl3A2 8.2 0.1 A3 18.9 2.0 A4 30.2 3.3 A5 115.8 13 L组 L 0.07 0.008 ρ(DO)=0.2 mg/L,
添加FeCl3P组 P 17.5 2.0 ρ(DO)=0.2 mg/L,
添加Fe(ClO4)3D组 D1 1.1 0.01 ρ(DO)=1.0 mg/L,
添加FeCl3D2 29.6 3.3 D3 118.4 13 注:表中“c”为物质的量浓度,“ρ”为质量浓度。 -
[1] SONG Congbo,WU Lin,XIE Yaochen,et al. Air pollution in China:Status and spatiotemporal variations[J]. Environmental Pollution,2017,227:334 − 347. doi: 10.1016/j.envpol.2017.04.075
[2] FILELLA M,BELZILE N,CHEN Yuwei. Antimony in the environment:A review focused on natural waters[J]. Earth-Science Reviews,2002,57(1/2):125 − 176.
[3] SHOTYK W,CHEN Bin,KRACHLER M. Lithogenic,oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog,Myrarnar,Faroe Islands[J]. Journal of Environmental Monitoring,2005,7(12):1148 − 1154. doi: 10.1039/b509928p
[4] KRACHLER M,ZHENG J,KOERNER R,et al. Increasing atmospheric antimony contamination in the Northern Hemisphere:Snow and ice evidence from Devon Island,Arctic Canada[J]. Journal of Environmental Monitoring,2005,7(12):1169 − 1176. doi: 10.1039/b509373b
[5] HU Xingyun,HE Mengchang,LI Sisi,et al. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China[J]. Journal of Geochemical Exploration,2017,176:76 − 84. doi: 10.1016/j.gexplo.2016.01.009
[6] 刘晓芸,刘晶晶,柯勇,等. 水体中锑的形态及转化规律研究进展[J]. 中国有色金属学报,2021,31(5):1330 − 1346. [LIU Xiaoyun,LIU Jingjing,KE Yong,et al. Research progress on speciation of antimony in natural water[J]. The Chinese Journal of Nonferrous Metals,2021,31(5):1330 − 1346. (in Chinese with English abstract)
LIU Xiaoyun, LIU Jingjing, KE Yong, et al . Research progress on speciation of antimony in natural water[J]. The Chinese Journal of Nonferrous Metals,2021 ,31 (5 ):1330 −1346 . (in Chinese with English abstract).[7] 丁建华,叶会寿,张勇,等. 扬子地块北缘大幕山地区锑矿成矿预测[J]. 地质通报,2022,41(7):1237 − 1248. [DING Jianhua,YE Huishou,ZHANG Yong,et al. Metallogenic prognosis of antimony deposits in Damushan area,north margin of Yangtze block[J]. Geological Bulletin of China,2022,41(7):1237 − 1248. (in Chinese with English abstract)
DING Jianhua, YE Huishou, ZHANG Yong, et al . Metallogenic prognosis of antimony deposits in Damushan area, north margin of Yangtze block[J]. Geological Bulletin of China,2022 ,41 (7 ):1237 −1248 . (in Chinese with English abstract).[8] WEN Bing,ZHOU Jianwei,ZHOU Aiguo,et al. Sources,migration and transformation of antimony contamination in the water environment of Xikuangshan,China:Evidence from geochemical and stable isotope (S,Sr) signatures[J]. Science of the Total Environment,2016,569/570:114 − 122. doi: 10.1016/j.scitotenv.2016.05.124
[9] FANG Ling,ZHOU Aiguo,LI Xiaoqian,et al. Response of antimony and arsenic in Karst aquifers and groundwater geochemistry to the influence of mine activities at the world’s largest antimony mine,central China[J]. Journal of Hydrology,2021,603:127131. doi: 10.1016/j.jhydrol.2021.127131
[10] 李琬钰, 周建伟, 贾晓岑, 等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报,2022,41(4):215 − 224. [LI Wanyu, ZHOU Jianwei, JIA Xiaocen, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology,2022,41(4):215 − 224. (in Chinese with English abstract)
LI Wanyu, ZHOU Jianwei, JIA Xiaocen, et al . EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology,2022 ,41 (4 ):215 −224 . (in Chinese with English abstract)[11] ZHOU Jianwei,NYIRENDA M T,XIE Lina,et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine,China[J]. Applied Geochemistry,2017,77:52 − 61. doi: 10.1016/j.apgeochem.2016.04.010
[12] GUO Wenjing,FU Zhiyou,WANG Hao,et al. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan,China[J]. Microchemical Journal,2018,137:181 − 189. doi: 10.1016/j.microc.2017.10.010
[13] BIVER M,SHOTYK W. Stibnite (Sb2S3) oxidative dissolution kinetics from pH 1 to 11[J]. Geochimica et Cosmochimica Acta,2012,79:127 − 139. doi: 10.1016/j.gca.2011.11.033
[14] BIVER M,SHOTYK W. Experimental study of the kinetics of ligand-promoted dissolution of stibnite (Sb2S3)[J]. Chemical Geology,2012,294/295:165 − 172. doi: 10.1016/j.chemgeo.2011.11.009
[15] HU Xingyun,HE Mengchang,KONG Linghao. Photopromoted oxidative dissolution of stibnite[J]. Applied Geochemistry,2015,61:53 − 61. doi: 10.1016/j.apgeochem.2015.05.014
[16] YAN Li,CHAN Tingshan,JING Chuanyong. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite[J]. Environmental Pollution,2020,262:114309. doi: 10.1016/j.envpol.2020.114309
[17] LONI P C,WU Mengxiaojun,WANG Weiqi,et al. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions[J]. Journal of Hazardous Materials,2020,385:121561. doi: 10.1016/j.jhazmat.2019.121561
[18] XIANG Li,LIU Chaoyang,LIU Deng,et al. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1[J]. Journal of Environmental Sciences,2022,111:273 − 281. doi: 10.1016/j.jes.2021.03.042
[19] 李立刚,周建伟,李伟洁,等. 某特大型锑矿区废石中锑的释放规律[J]. 地质科技情报,2018,37(5):215 − 221. [LI Ligang,ZHOU Jianwei,LI Weijie,et al. Antimony release characteristics of waste rock from an extra large antimony mining area[J]. Geological Science and Technology Information,2018,37(5):215 − 221. (in Chinese with English abstract)
LI Ligang, ZHOU Jianwei, LI Weijie, et al . Antimony release characteristics of waste rock from an extra large antimony mining area[J]. Geological Science and Technology Information,2018 ,37 (5 ):215 −221 . (in Chinese with English abstract).[20] 方传棣,成金华,赵鹏大,等. 长江经济带矿区土壤重金属污染特征与评价[J]. 地质科技情报,2019,38(5):230 − 239. [FANG Chuandi,CHENG Jinhua,ZHAO Pengda,et al. Characteristics and evaluation of heavy metal pollution in soils of mining areas in the Yangtze River economic belt[J]. Geological Science and Technology Information,2019,38(5):230 − 239. (in Chinese with English abstract)
FANG Chuandi, CHENG Jinhua, ZHAO Pengda, et al . Characteristics and evaluation of heavy metal pollution in soils of mining areas in the Yangtze River economic belt[J]. Geological Science and Technology Information,2019 ,38 (5 ):230 −239 . (in Chinese with English abstract).[21] 武亚遵,潘春芳,林云,等. 典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素[J]. 地质科技情报,2018,37(5):191 − 199. [WU Yazun,PAN Chunfang,LIN Yun,et al. Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China Coalfield[J]. Geological Science and Technology Information,2018,37(5):191 − 199. (in Chinese with English abstract)
WU Yazun, PAN Chunfang, LIN Yun, et al . Hydrogeochemical characteristics and controlling factors of main water filled aquifers in the typical North China Coalfield[J]. Geological Science and Technology Information,2018 ,37 (5 ):191 −199 . (in Chinese with English abstract).[22] 李小倩,张彬,周爱国,等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质,2014,41(6):103 − 109. [LI Xiaoqian,ZHANG Bin,ZHOU Aiguo,et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology,2014,41(6):103 − 109. (in Chinese with English abstract)
LI Xiaoqian, ZHANG Bin, ZHOU Aiguo, et al . Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology,2014 ,41 (6 ):103 −109 . (in Chinese with English abstract).[23] 李晓艳,张青伟,洪松涛,等. 不同氧化还原条件下铅锌矿尾砂中重金属元素活化迁移规律[J]. 吉林大学学报(地球科学版),2022,52(2):434 − 441. [LI Xiaoyan,ZHANG Qingwei,HONG Songtao,et al. Activation and migration of heavy metal elements in lead zinc ore tailings under different redox conditions[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):434 − 441. (in Chinese with English abstract)
LI Xiaoyan, ZHANG Qingwei, HONG Songtao, et al . Activation and migration of heavy metal elements in lead zinc ore tailings under different redox conditions[J]. Journal of Jilin University (Earth Science Edition),2022 ,52 (2 ):434 −441 . (in Chinese with English abstract).[24] 张进德,田磊,裴圣良. 矿山水土污染与防治对策研究[J]. 水文地质工程地质,2021,48(2):157 − 163. [ZHANG Jinde,TIAN Lei,PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology,2021,48(2):157 − 163. (in Chinese with English abstract)
ZHANG Jinde, TIAN Lei, PEI Shengliang . A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology,2021 ,48 (2 ):157 −163 . (in Chinese with English abstract).[25] GLEISNER M,HERBERT R B,FROGNER KOCKUM P C. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology,2006,225(1/2):16 − 29.
[26] KONG Linghao,HE Mengchang,HU Xingyun. Rapid photooxidation of Sb(III) in the presence of different Fe(III) species[J]. Geochimica et Cosmochimica Acta,2016,180:214 − 226. doi: 10.1016/j.gca.2016.02.022
[27] 李大塘,王辉宪. 水解平衡与三硫化二锑的溶解性[J]. 化学教育,2001(11):44 − 45. [LI Datang,WANG Huixian. Hydrolysis equilibrium and solubility of antimony trisulfide[J]. Journal of Chemical Education,2001(11):44 − 45. (in Chinese)
LI Datang, WANG Huixian . Hydrolysis equilibrium and solubility of antimony trisulfide[J]. Journal of Chemical Education,2001 (11 ):44 −45 . (in Chinese).[28] 江南,李小倩,周爱国,等. pH值和氧化剂对硫化锑氧化溶解的影响机制[J]. 地质科技通报,2020,39(4):76 − 84. [JIANG Nan,LI Xiaoqian,ZHOU Aiguo,et al. Effect of pH value and Fe(III) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology,2020,39(4):76 − 84. (in Chinese with English abstract)
JIANG Nan, LI Xiaoqian, ZHOU Aiguo, et al . Effect of pH value and Fe(III) on the oxidative dissolution of stibnite[J]. Bulletin of Geological Science and Technology,2020 ,39 (4 ):76 −84 . (in Chinese with English abstract).[29] HERATH I,VITHANAGE M,BUNDSCHUH J. Antimony as a global dilemma:Geochemistry,mobility,fate and transport[J]. Environmental Pollution,2017,223:545 − 559. doi: 10.1016/j.envpol.2017.01.057
[30] BORILOVA S,MANDL M,ZEMAN J,et al. Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans?[J]. Frontiers in Microbiology,2018,9:3134. doi: 10.3389/fmicb.2018.03134
[31] 陆现彩,李娟,刘欢,等. 金属硫化物微生物氧化的机制和效应[J]. 岩石学报,2019,35(1):153 − 163. [LU Xiancai,LI Juan,LIU Huan,et al. Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica,2019,35(1):153 − 163. (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.01.12
doi: 10.18654/1000-0569/2019.01.12LU Xiancai, LI Juan, LIU Huan, et al . Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica,2019 ,35 (1 ):153 −163 . (in Chinese with English abstract). -