等水位河间地块岩溶裂隙和流场演变模拟初探

焦友军, 黄奇波, 王旭升, 于青春. 等水位河间地块岩溶裂隙和流场演变模拟初探[J]. 水文地质工程地质, 2024, 51(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202307009
引用本文: 焦友军, 黄奇波, 王旭升, 于青春. 等水位河间地块岩溶裂隙和流场演变模拟初探[J]. 水文地质工程地质, 2024, 51(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202307009
JIAO Youjun, HUANG Qibo, WANG Xusheng, YU Qingchun. Preliminary modeling investigation on changes in Karst fractures and seepage field in rockmass between streams with equal water levels[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202307009
Citation: JIAO Youjun, HUANG Qibo, WANG Xusheng, YU Qingchun. Preliminary modeling investigation on changes in Karst fractures and seepage field in rockmass between streams with equal water levels[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 1-11. doi: 10.16030/j.cnki.issn.1000-3665.202307009

等水位河间地块岩溶裂隙和流场演变模拟初探

  • 基金项目: 国家自然科学基金项目(41772249;41877196;41702279);中国地质调查局地质调查项目(DD20221758);中国地质科学院岩溶地质研究所基本科研业务项目(2021012)
详细信息
    作者简介: 焦友军(1990—),男,博士研究生,助理研究员,主要从事岩溶水资源研究。E-mail:jiaoyoujun@mail.cgs.gov.cn
    通讯作者: 王旭升(1974—),男,博士,教授,主要从事地下水动力学研究。E-mail:wxsh@cugb.edu.cn
  • 中图分类号: P641.2

Preliminary modeling investigation on changes in Karst fractures and seepage field in rockmass between streams with equal water levels

More Information
  • 经典地下水动力学根据Dupuit假设得到了河渠间潜水含水层水位分布的解析解,常用于实际工程。该解析模型是否适用于具有裂隙网络的河间地块岩溶含水层,这个问题远未得到充分论证。考虑降雨入渗强度为100~800 mm/a的情形,建立剖面二维离散裂隙网络渗流模型,对等水位河间地块开展数值模拟研究。裂隙网络包含陡倾角和缓倾角2组裂隙,具有随机分布特征,隙宽均值为0.01 cm。根据稳定流场模拟结果划分包气带和饱水带裂隙界面,分析水位分布特征,计算饱水带裂隙网络的等效渗透系数,并与经典解析模型反算的等效渗透系数进行了对比,发现采用解析模型的误差小于25%。进一步模拟岩溶作用下裂隙演变的情景,对10 ka内河间地块裂隙状态和准稳态渗流进行了预测,发现隙宽最大值达到0.07 cm,经典解析模型仍然能够通过水位反算出数量级相符的等效渗透系数。模拟结果表明潜水面具有不规则形状,而且在河岸会出现明显的渗出面泉点,裂隙泉点数量在岩溶演变过程中逐渐减少。经典解析模型虽然能够估算河间地块裂隙网络的等效渗透系数,但不能刻画潜水面的不规则形态,也不能预测岩溶裂隙渗流场的演变趋势。

  • 加载中
  • 图 1  等水位河间地块概念模型

    Figure 1. 

    图 2  固定裂隙网络的模拟流场随河水位与入渗强度的变化

    Figure 2. 

    图 3  经典模型反算的等效渗透系数变化特征

    Figure 3. 

    图 4  计算等效渗透系数的矩形裂隙窗口

    Figure 4. 

    图 5  典型模拟情景下裂隙窗口等效渗透系数柱状图

    Figure 5. 

    图 6  10 ka内河间地块裂隙水演变的模拟结果

    Figure 6. 

    图 7  不同河水位下裂隙演变10 ka第1组(缓倾角)和第2组(陡倾角)的隙宽直方图

    Figure 7. 

    图 8  经典模型计算等效渗透系数和中心线最高水位随时间的演变

    Figure 8. 

    图 9  模拟情形B3的不连续潜水面和流场

    Figure 9. 

    图 10  模拟情景B3岩溶演变过程渗出面泉点流量变化

    Figure 10. 

    表 1  随机裂隙网络统计参数

    Table 1.  Statistic parameters of the random fracture network

    裂隙组 统计参数 服从分布 均值 标准差 最小值 最大值
    第一组 倾角/( °) 正态分布 10 1 9 12
    迹长/m 对数正态分布 250 5 230 270
    隙宽/cm 均匀分布 0.01 0.008 0.012
    第二组 倾角/( °) 正态分布 85 2 82 88
    迹长/m 对数正态分布 250 5 230 270
    隙宽/cm 均匀分布 0.01 0.008 0.012
    下载: 导出CSV

    表 2  不同模拟情形的最高湿节点水头及其坐标

    Table 2.  Hydraulic head and coordinates of the highest wet fracture node in different scenarios

    模拟情形 河水位
    /m
    降水入渗强度
    /(mm·a−1
    最高湿节点
    水头/m 坐标x/m 坐标 z/m
    A1 100 300 262.17 512.14 257.83
    A2 500 340.18 551.75 339.03
    A3 700 382.23 692.13 376.77
    B1 200 300 307.90 548.53 304.75
    B2 500 378.74 587.27 368.79
    B3 700 429.67 538.41 420.88
    下载: 导出CSV

    表 3  中心线最高水位在不同情形的模拟结果

    Table 3.  Modeling results of the highest water level on the middle line in different scenarios

    降水入渗强度
    /(mm·a−1
    河水位100 m情景 河水位200 m情景
    水位/m 情景编号 水位/m 情景编号
    100 160.41 241.74
    200 204.16 280.85
    300 261.58 A1 307.21 B1
    400 291.37 336.79
    500 326.79 A2 367.97 B2
    600 346.4 390.51
    700 364.43 A3 420.88 B3
    800 405.34 435.55
    下载: 导出CSV
  • [1]

    陈崇希,林敏. 地下水动力学[M]. 武汉:中国地质大学出版社,1999. [CHEN Chongxi,LIN Min. Groundwater hydraulics[M]. Wuhan:China University of Geosciences Press,1999. (in Chinese)

    CHEN Chongxi, LIN Min. Groundwater hydraulics[M]. Wuhan: China University of Geosciences Press, 1999. (in Chinese)

    [2]

    王大纯,张人权,史毅虹,等. 水文地质学基础[M]. 北京:地质出版社,1995. [WANG Dachun,ZHANG Renquan,SHI Yihong,et al. Fundamentals of hydrogeology[M]. Beijing:Geological Publishing House,1995. (in Chinese)

    WANG Dachun, ZHANG Renquan, SHI Yihong, et al. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 1995. (in Chinese)

    [3]

    YU Qingchun,SHEN Jifang,WAN Junwei,et al. Some investigation on early organization of Karst system[J]. Journal of China University of Geosciences,1999,10:314 − 321.

    [4]

    HAN Pengfei,WANG Xusheng,WAN Li,et al. The exact groundwater divide on water table between two rivers:a fundamental model investigation[J]. Water,2019,11(4):685. doi: 10.3390/w11040685

    [5]

    LI Ruoyi,WANG Xusheng. Analytical investigation of the exact groundwater divide between rivers beyond the Dupuit–Forchheimer approximation[J]. Hydrological Processes,2021,35(2):e14036. doi: 10.1002/hyp.14036

    [6]

    张有天,王镭,陈平. 有地表入渗的岩体渗流分析[J]. 岩石力学与工程学报,1991,10(2):103 − 111. [ZHANG Youtian,WANG Lei,CHEN Ping. Analysis of water percolation in rockmass due to surface infiltration[J]. Chinese Journal of Rock Mechanics and Engineering,1991,10(2):103 − 111. (in Chinese with English abstract)

    ZHANG Youtian, WANG Lei, CHEN Ping. Analysis of water percolation in rockmass due to surface infiltration[J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 102): 103111. (in Chinese with English abstract)

    [7]

    姚池,姜清辉,叶祖洋,等. 裂隙网络无压渗流分析的初流量法[J]. 岩土力学,2012,33(6):1896 − 1903. [YAO Chi,JIANG Qinghui,YE Zuyang,et al. Initial flow method for unconfined seepage problems of fracture networks[J]. Rock and Soil Mechanics,2012,33(6):1896 − 1903. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.045

    YAO Chi, JIANG Qinghui, YE Zuyang, et al. Initial flow method for unconfined seepage problems of fracture networks[J]. Rock and Soil Mechanics, 2012, 336): 18961903. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.06.045

    [8]

    JIANG Qinghui,YAO Chi,YE Zuyang,et al. Seepage flow with free surface in fracture networks[J]. Water Resources Research,2013,49(1):176 − 186. doi: 10.1029/2012WR011991

    [9]

    KAUFMANN G,BRAUN J. Karst aquifer evolution in fractured rocks[J]. Water Resources Research,1999,35(11):3223 − 3238. doi: 10.1029/1999WR900169

    [10]

    徐维生,柴军瑞,陈兴周. 含自由面岩体裂隙网络非线性渗流分析的传导矩阵调整法[J]. 水动力学研究与进展A辑,2010,25(4):484 − 492. [XU Weisheng,CHAI Junrui,CHEN Xingzhou. The conductivity matrix reforming method about non-linear seepage with free surface in fracture network of rock mass[J]. Chinese Journal of Hydrodynamics,2010,25(4):484 − 492. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4874.2010.04.008

    XU Weisheng, CHAI Junrui, CHEN Xingzhou. The conductivity matrix reforming method about non-linear seepage with free surface in fracture network of rock mass[J]. Chinese Journal of Hydrodynamics, 2010, 254): 484492. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-4874.2010.04.008

    [11]

    GABROVŠEK F,ROMANOV D,DREYBRODT W. Early karstification in a dual-fracture aquifer:The role of exchange flow between prominent fractures and a dense net of fissures[J]. Journal of Hydrology,2004,299(1/2):45 − 66.

    [12]

    薛亮,于青春. 岩溶水系统演化中河间地块分水岭消失过程的数值模拟分析[J]. 水文地质工程地质,2009,36(2):7 − 12. [XUE Liang,YU Qingchun. Numerical simulation for the disappearing of a watershed divide in a karst groundwater system[J]. Hydrogeology & Engineering Geology,2009,36(2):7 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.02.003

    XUE Liang, YU Qingchun. Numerical simulation for the disappearing of a watershed divide in a karst groundwater system[J]. Hydrogeology & Engineering Geology, 2009, 362): 712. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2009.02.003

    [13]

    于青春,武雄,大西有三. 非连续裂隙网络管状渗流模型及其校正[J]. 岩石力学与工程学报,2006,25(7):1469 − 1474. [YU Qingchun,WU Xiong,OHNISHI Yuzo. Channel model for fluid flow in discrete fracture network and its modification[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1469 − 1474. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.07.026

    YU Qingchun, WU Xiong, OHNISHI Yuzo. Channel model for fluid flow in discrete fracture network and its modification[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 257): 14691474. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.07.026

    [14]

    王云,于青春,薛亮,等. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶,2010,29(4):378 − 384. [WANG Yun,YU Qingchun,XUE Liang,et al. Numerical simulation for the evolution of the overflow spring in fracture-karst aquifer system[J]. Carsologica Sinica,2010,29(4):378 − 384. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2010.04.005

    WANG Yun, YU Qingchun, XUE Liang, et al. Numerical simulation for the evolution of the overflow spring in fracture-karst aquifer system[J]. Carsologica Sinica, 2010, 294): 378384. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2010.04.005

    [15]

    DREYBRODT W. The role of dissolution kinetics in the development of karst aquifers in limestone:A model simulation of karst evolution[J]. The Journal of Geology,1990,98(5):639 − 655. doi: 10.1086/629431

    [16]

    LIU Zaihua,DREYBROD W. Dissolution kinetics of calcium carbonate minerals in H2O CO2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H2O+ CO2→ H++ HCO3[J]. Geochimica et Cosmochimica Acta,1997,61(14):2879 − 2889. doi: 10.1016/S0016-7037(97)00143-9

    [17]

    张莉丽. 裂隙岩体渗透典型单元体存在性[D]. 北京:中国地质大学(北京),2011. [ZHANG Lili. Determining the representative elementary volumes of fracture rock mass based on permeability analysis[D]. Beijing:China University of Geosciences(Beijing),2011. (in Chinese with English abstract)

    ZHANG Lili. Determining the representative elementary volumes of fracture rock mass based on permeability analysis[D]. Beijing: China University of Geosciences(Beijing), 2011. (in Chinese with English abstract)

    [18]

    GROVES C G,HOWARD A D. Minimum hydrochemical conditions allowing limestone cave development[J]. Water Resources Research,1994,30(3):607 − 615. doi: 10.1029/93WR02945

    [19]

    GROVES C G,HOWARD A D. Early development of karst systems:1. Preferential flow path enlargement under laminar flow[J]. Water Resources Research,1994,30(10):2837 − 2846. doi: 10.1029/94WR01303

    [20]

    万军伟,晁念英,沈继方,等. 湖北清江罗家坳河间地块岩溶系统碳循环特征[J]. 中国岩溶,1999,18(2):123 − 128. [WAN Junwei,CHAO Nianying,SHEN Jifang,et al. Study on the carbon cycle in a Karst system at the luojiaao interfluve along the Qingjiang River of westen Hubei,China[J]. Carsologica Sinica,1999,18(2):123 − 128. (in Chinese with English abstract)

    WAN Junwei, CHAO Nianying, SHEN Jifang, et al. Study on the carbon cycle in a Karst system at the luojiaao interfluve along the Qingjiang River of westen Hubei, China[J]. Carsologica Sinica, 1999, 182): 123128. (in Chinese with English abstract)

    [21]

    韩鹏飞,王旭升,蒋小伟,等. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质,2023,50(2):1 − 12. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems:From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023,50(2):1 − 12. (in Chinese with English abstract)

    HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 502): 112. (in Chinese with English abstract)

    [22]

    陈崇希. Dupuit模型的改进——具入渗补给[J]. 水文地质工程地质,2020,47(5):1 − 4. [CHEN Chongxi. Improvement of Dupuit model:With infiltration recharge[J]. Hydrogeology & Engineering Geology,2020,47(5):1 − 4. (in Chinese with English abstract)

    CHEN Chongxi. Improvement of Dupuit model: With infiltration recharge[J]. Hydrogeology & Engineering Geology, 2020, 475): 14. (in Chinese with English abstract)

  • 加载中

(10)

(3)

计量
  • 文章访问数:  997
  • PDF下载数:  140
  • 施引文献:  0
出版历程
收稿日期:  2023-07-16
修回日期:  2023-08-14
刊出日期:  2024-01-15

目录