Loading [MathJax]/jax/output/SVG/jax.js

推扭(H-T)荷载作用下刚性矩形基础承载特性研究

尹平保, 伍晗曦, 贺炜, 谭李俊英, 刘江波, 方敏. 推扭(H-T)荷载作用下刚性矩形基础承载特性研究[J]. 水文地质工程地质, 2024, 51(4): 125-134. doi: 10.16030/j.cnki.issn.1000-3665.202307036
引用本文: 尹平保, 伍晗曦, 贺炜, 谭李俊英, 刘江波, 方敏. 推扭(H-T)荷载作用下刚性矩形基础承载特性研究[J]. 水文地质工程地质, 2024, 51(4): 125-134. doi: 10.16030/j.cnki.issn.1000-3665.202307036
YIN Pingbao, WU Hanxi, HE Wei, TAN Lijunying, LIU Jiangbo, FANG Min. Study on bearing characteristics of rigid rectangular foundation subjected to horizontal force and torque (H-T)[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 125-134. doi: 10.16030/j.cnki.issn.1000-3665.202307036
Citation: YIN Pingbao, WU Hanxi, HE Wei, TAN Lijunying, LIU Jiangbo, FANG Min. Study on bearing characteristics of rigid rectangular foundation subjected to horizontal force and torque (H-T)[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 125-134. doi: 10.16030/j.cnki.issn.1000-3665.202307036

推扭(H-T)荷载作用下刚性矩形基础承载特性研究

  • 基金项目: 国家自然科学基金项目(52178311;52078055);湖南省教育厅科学研究项目(20A001);江西省交通运输厅科技项目(2021H0005)
详细信息
    作者简介: 尹平保(1984—),男,博士,副教授,主要从事桩基础及支挡结构工程等方面的研究。E-mail:pingbaby921@163.com
  • 中图分类号: TU471.1

Study on bearing characteristics of rigid rectangular foundation subjected to horizontal force and torque (H-T)

  • 现行杆件基础设计仅考虑水平力(H)而忽略扭矩(T)的作用,这很可能导致杆件基础发生推扭破坏。为分析推扭(H-T)荷载下刚性矩形基础的承载特性,首先根据杆件基础的受力特点,建立了相应的简化计算模型,推导了TH-偏心弯矩(M) 2种承载模式下基础受力与变形分析的理论解答;其次通过数值模拟分析,获得了H-T荷载下矩形刚性基础的破坏包络线;在此基础上,通过室内模型试验验证了理论计算方法的合理性,并探讨了扭推比、地基抗力比例系数m值对基础受力与变形的影响。研究发现:H-T荷载下刚性矩形基础的破坏包络线近似呈抛物线分布;随扭推比增大,矩形基础的地基承载力随之减小,其破坏模式也由水平变形破坏转为扭转变形破坏;增大m值,可有效减小基础地面处水平位移及旋转角度。为确保刚性矩形基础的安全稳定,其上覆回填土体性质和压实度均应满足设计要求。上述结论可为多杆合一杆件基础的设计提供参考。

  • 随着城市现代化发展,交通标识牌杆、照明灯杆、电子监控杆等传统杆件设施林立道路两旁,造成城市各种杆体重复建设,影响城市空间布局,亟需通过“多杆合一”技术将其进行整合,从而美化道路环境,节省城市地上空间[1]。另外,为进一步节约城市地下空间,多杆合一杆件多采用不带扩底的等截面矩形基础,因其刚度较大,不妨将其称为“刚性矩形基础”。与单一杆件相比,多杆合一杆件的上部设备和构件更多,杆件基础除承受竖向力(V)、水平力(H)和偏心弯矩(M)外,还要承受扭矩(T)的作用,使得其受力与变形特性更为复杂。为设计出更为经济合理的多杆合一杆件基础,研究推扭(H-T)荷载作用下刚性矩形基础的承载特性具有重要的理论研究意义。

    关于复合荷载作用下基础的承载特性,已有学者开展了一些有益的研究工作。理论方面:邹新军等[2]、饶文昌等[3]、王飞等[4]建立了组合荷载作用下基桩水平承载简化计算模型,获得了基桩受力与变形计算的半解析解答;覃玉兰等[5]、邹新军等[6]推导了V-TH-T下基桩的极限承载力。试验方面:武科等[7]开展了扭剪荷载作用下桶形基础室内模型试验,分析了桶形基础与土的相互作用机理;邹新军等[89],郭沛翰等[10]通过砂土单桩承载特性模型试验发现H-T下桩身极限承载力较单一水平受荷桩或受扭桩小;Hu等[11]开展了H-T下单桩离心机试验,结果表明T会导致桩身水平承载力降低30%~50%。数值模拟方面:王思等[12]建模分析了桩径比、桩端土强度等对大直径超长桩承载性状的影响;武科等[13]通过数值模拟得到了H-T下桶形基础的破坏包络线,分析了桶形基础稳定性;范庆来等[14]基于Tresca屈服准则,进行了海上风机桶形基础三维有限元分析,得到了V-H-T荷载空间内的破坏包络面。上述结果均表明扭矩对基础的受力与变形有显著影响,且会大幅降低基础的承载力。但这些研究主要针对桩基础和桶型基础[1517]。对于刚性矩形基础,目前主要从水平受荷的角度来分析其承载特性[1821],如:穆保岗等[22]基于模型试验结果,建立了修正的理想塑性土体水平抗力(p)与桩身挠度(y)的关系曲线,为软土地区刚性矩形基础水平变形计算提供了理论模型。吴炯等[23]采用极限平衡法推导了铁塔矩形基础的倾覆验算公式,通过数值模拟验证了该公式的合理性。另外,现行《公路桥涵地基与基础设计规范》(JTG 3363—2019)[24]中有关刚性基础的计算,也未考虑扭矩的影响,由此设计的刚性基础与实际情况差异显著。综上所述,目前有关刚性矩形基础的研究仅考虑HM的作用,并未考虑T的影响[25],这将可能导致基础发生扭转变形破坏,故针对刚性矩形基础开展H-T荷载作用下的承载特性研究非常必要。

    鉴于此,本文拟在现有研究基础上,根据多杆合一杆件基础的承载特性,建立相应的简化受力模型及数值计算模型,导得TH-M 2种承载模式下杆件基础的理论解答和破坏包络线,并采用模型试验验证其合理性,进而探讨扭推比T/H(扭矩和水平力的比值)和地基抗力比例系数m值对基础承载特性的影响。

    通常情况下,多杆合一杆件上将集成交通指示牌、摄像头及信号箱等设备,故基础将会承受一定的V;另外,作用在标识板上的风荷载,将通过上部杆件传递给基础,使得基础还会承受HMT等作用。简化后的多杆合一杆件基础受力模型如图1所示。

    图 1.  多杆合一杆件基础简化受力模型
    Figure 1.  Simplified force model of multi-pole foundation

    为便于分析,在图1所示的简化受力模型基础上,做出如下假定[26]

    (1)不考虑基础与土之间的黏着力和摩阻力;

    (2)将地基土视为弹性变形介质,其水平向地基系数随深度成正比,土体横向抗力与土体变形量成正比;

    (3)基础受力后,基础只发生刚体转动,不做平行运动,其本身的弯曲变形略去不计。

    根据上述简化计算模型,以下将分别分析TH-M作用下杆件基础的受力与变形,进而对其破坏包络线进行分析。

    当刚性矩形基础(长b1×宽a1×高c1)受T作用时,基础将绕中心轴发生平面旋转,假定其旋转角度为θ,基础受力与变形如图2所示。

    图 2.  基础受力与变形平面图
    Figure 2.  Force and deformation of the foundation

    因基础四周所受侧土压力呈中心对称分布,故可选取其中的x正半轴部分进行分析。

    作用在基础上的侧向土抗力pypx分别为:

    c1'0b1'20mzytanθdydz=py (1)
    c1'0a1'20mzxtanθdxdz=px (2)

    式中:z——计算点深度/m;

    m——地基抗力比例系数/(kN·m−4);

    a1'b1'c1'——基础计算宽度及深度/m,a1'=1.5a1b1'=1.5b1c1'=1.5c1

    根据静力平衡关系可得:

    T=2a1'px3+2b1'py3 (3)

    T作用下基础旋转角度θ为:

    θ=arctan24Tmc1'2(a1'3+b1'3) (4)

    HM作用下,刚性矩形基础将绕某点ox0z0)倾斜,假设其倾斜角度为ω。若矩形基础所受偏心荷载较小,基底与地基土体尚未脱开,基底土反力呈梯形分布,此为承载模式一,如图3所示。随着基础所受偏心荷载增大,基础倾斜角度ω增大,由于基础与地基土体之间不能承受拉应力,部分基底与地基土体发生脱开,基底应力重分布,此时基底土反力由梯形分布转变为三角形分布,此即承载模式二,如图4所示。以下将根据这2个阶段对基础进行受力与变形分析。

    图 3.  模式一下基础受力与变形示意图
    注:P底maxP底min为作用在基底的最大、最小土反力;e为基底土反力合力P偏离基础中轴线的距离;Δh为基底竖向位移;Δx2为深度z处基础产生的水平位移;pzz处的侧向土抗力。
    Figure 3.  Force and deformation of foundation in condition 1
    图 4.  模式二下基础受力与变形示意图
    注:b'为基底未脱开部分的宽度。
    Figure 4.  Force and deformation of foundation in condition 2

    (1)模式一下基础受力与变形分析

    在竖向荷载V及基础自重G下,基底竖向位移为:

    Δh=(V+G)/(AC0) (5)

    式中:V——上部杆件及设备重量/kN;

    G——基础自重/kN;

    A——基础底部面积/m2

    C0——基底地基抗力系数/(kN·m−3)。

    C0 = mz (6)

    HM作用下,地面以下深度z处基础产生的水平位移∆x2及侧向土抗力pz分别为:

    Δx2=(b12x0)cosω(zz0)sinω+x0b12 (7)
    pz=Δx2Cz (8)
    Cz=mz (9)

    式中:Cz——地面以下深度z处水平向地基抗力系数/(kN·m−3)。

    当基础倾斜ω后,基底两侧的BC点将分别位移至B’和C’点,假设B’和C’两点的坐标分别为(x2, z2)和(x3, z3)。根据几何关系可得:

    z2=(c1z0)cosω+(b12x0)sinω+z0 (10)
    z3=(c1z0)cosω+(b12x0)sinω+z0 (11)

    根据叠加原理,可得作用在基底的最大、最小土反力分别为:

    pmax=(z2c1+V+GAC0)C0 (12)
    pmin=(z3c1+V+GAC0)C0 (13)

    由式(13)可知,若p底min大于等于0,则说明基底与地基土尚未脱开,即模式一;若p底min小于0,则说明基底与地基土部分脱开,即模式二。

    基底土反力合力P偏离基础中轴线距离e为:

    e=b12b132pmin+pmaxpmin+pmax (14)

    根据水平静力平衡条件∑H=0,可得:

    Hc10pza1''dz=0 (15)

    式中:a1''——基础计算宽度/m,当a1<1 m时,a1''=1.5a1+0.5;当a1≥1 m时,a1''=a1+1。

    对基础顶面中心E点取矩,并根据力矩平衡条件∑ME=0,可得:

    M+c10pza1''zdza1(pmin+pmax)b1e2=0 (16)

    由竖向静力平衡条件∑V=0,得:

    a1(pmin+pmax)b12GV=0 (17)

    因基础倾斜角度ω较小,可采用二阶泰勒级数将式(15)—(17)展开为:

    Hma1''(b1ω24+x0ω22+z0ωx36z0)c212+ma1''(ωω36)c313=0 (18)
    M+ma1''(b1ω24+x0ω22+z0ωx36z0)c313ma1''(ωω36)c414a1(pmin+pmax)b1e2=0 (19)
    a1(pmin+pmax)b12GV=0 (20)

    (2)模式二下基础受力与变形分析

    在承载模式二下,基础倾斜角度较大,基底与土体在Dx4, z4)点处发生脱开(基底未脱开部分宽度为b'),基底应力重分布,整体呈三角形分布,如图4所示。

    DB’两点的直线表达式为:

    zz2=tanω(xx2) (21)

    D点[x4, c1−(V+G)/(AC0)]代入到式(21)中,可得D点坐标为:

    x4=c1V+GAC0z2tanω+x2,z4=c1V+GAC0 (22)

    由此得基底未脱开部分宽度b'为:

    b'=b12c1V+GAC0z2tanωx2 (23)

    同理建立如下平衡方程式:

    根据水平静力平衡条件∑H=0,可得:

    Hc10pxa1''dz=0 (24)

    对基础顶面中心E点取矩,并根据力矩平衡条件∑ME=0,可得:

    M+c10pxa1''zdzb'2tanωC0a12(b12b'3)=0 (25)

    由竖向静力平衡条件∑V=0,得:

    b'2tanωC0a12GV=0 (26)

    同理,采用泰勒级数将其展开为:

    Hma1''(b1ω24+x0ω22+z0ωx36z0)c212+ma1''(ωω36)c313=0 (27)
    M+ma1''(b1ω24+x0ω22+z0ωx36z0)c313ma1''(ωω36)c414b'2(ω+ω33)C0a12(b12b'3)=0 (28)
    b'2(ω+ω33)C0a12GV=0 (29)

    综上所述,根据不同承载模式下刚性矩形基础的几何关系和静力平衡条件,对模式一可联立式(18)—(20)、对模式二可联立式(27)—(29)进行求解,即可得到相应承载模式下基础倾斜中心位置ox0z0)和倾斜角度ω

    在推扭加载模式下,通过破坏包络线可较好地判断基础是否由安全状态进入极限状态,也是确定基础极限承载力的一种方法[27]。对于H-T作用下刚性矩形基础的破坏标准,现有研究表明:在纯扭荷载作用下,当基础旋转角度达到1.15°时,可认为基础已达扭转破坏,对应的T即为扭转极限地基承载力Tult[12];在纯水平荷载作用下,当基础地面处水平位移达到10 mm时,可认为基础已达水平变形极限,对应的H即为水平极限地基承载力Hult[28];在H-T作用下,当基础旋转角度达到1.15°或地面处水平位移达到10 mm时,即可认为基础已达破坏。在此基础上,通过数值模拟分析,按不同T/H在基础顶面施加荷载直至达到上述破坏标准,并将基础破坏时对应的荷载分量归一化,从而得到基础破坏包络线。实际工程中,基础埋置深度c1和基底宽度b1对其承载力有较大影响,故保持b1不变,假定b1和长度a1相等,可以得到不同深宽(长)比c1/b1c1/a1)下基础破坏包络线,如图5所示。

    图 5.  H-T下刚性矩形基础的破坏包络线
    Figure 5.  Failure envelopes of rigid rectangular foundation under H-T load

    图5可知,刚性矩形基础的推扭破坏包络线近似呈抛物线分布。为便于工程应用,可对其进行非线性拟合,得到相应的表达式:

    f=α(TTult)2+β(TTult)+η(HHult) (30)

    式中:αβη——与深宽比c1/b1有关的拟合参数,其表 达式为:

    {α=4.00.9c1/b1β=7.5  1.8c1/b1η=12.54.2c1/b1 (31)

    实际工程中,可通过理论分析确定刚性矩形基础的地基水平极限承载力Hult和扭矩极限承载力Tult,再结合上述破坏包络线判断基础的安全状况。

    为检验上述理论解答的准确性,以海口市临空经济区某多杆合一杆件矩形基础为原型,在室内开展了H-T作用下刚性矩形基础模型试验。模型箱尺寸为2 m(长)×1.8 m(宽)×1.6 m(高);原型矩形基础尺寸为0.9 m(长)×0.9 m(宽)×1.5 m(高);模型矩形基础尺寸为0.3 m(长)×0.3 m(宽)×0.5 m(高),原型与模型基础的几何相似比为3∶1;模型基础由C30混凝土制作而成。上部杆件采用直径为108 mm、壁厚为4 mm的钢管,基础与杆件采用高强螺栓相连。试验土体取自长沙某实际工程,土粒级配曲线见图6,土体的物理力学性质指标见表1

    图 6.  试验用土的级配曲线
    Figure 6.  Grading curve of test soil
    表 1.  试验土体物理力学性质指标
    Table 1.  Physical and mechanical indexes of test soil
    参数 φ/(°) c/kPa w/% ρdmax/(g·cm−3 Es/MPa Ip
    取值 24.39 26 19.72 1.75 6.93 27.2
      注:φ为内摩擦角;c为黏聚力;w为含水率,ρdmax为最大干密度;Es为压缩模量;Ip为土体塑性指数。
     | Show Table
    DownLoad: CSV

    试验加载装置由钢绞线、砝码以及定滑轮等组成。采用位移计测试基础地面处水平位移;采用土压力盒测试基础前后两侧及底部土反力;利用角度传感器测试基础顶面的倾斜角度及旋转角度;通过模型刚桩测试地基抗力比例系数m值;模型试验布置如图7所示。

    图 7.  模型试验布置图(尺寸单位:cm)
    注:P为模型钢桩上的水平荷载。
    Figure 7.  Model test arrangement (Unit: cm)

    在现有研究基础上,结合《公路桥梁抗风设计规范》(JTG/T 3360-01—2018)等[25, 29],计算得到最不利状态下基础顶部所受荷载为:V=0.98 kN,H=0.71 kN,M=1.64 kN·m,T=0.71 kN。

    多杆合一杆件属于高耸结构,其上部结构在风荷载作用下产生的弯矩与水平荷载的比值较大,所需模型杆件过长。为便于试验加载,减小模型杆件高度,可根据等效原则在基础两端同时施加水平荷载H1H2而获得相应条件下的HM以及T。具体的试验加载方案如表2所示。

    表 2.  试验加载方案
    Table 2.  Test loading scheme
    荷载等级 H1/kN H2/kN H/kN T/(kN·m)
    1 0.20 0.13 0.07 0.068
    2 0.40 0.26 0.14 0.136
    3 0.60 0.39 0.21 0.204
    n 0.20n 0.13n 0.07n 0.068n
     | Show Table
    DownLoad: CSV
    M=H1×1H2×0.3 (32)
    H=H1H2 (33)
    T=H1×0.34 (34)

    通过刚性桩水平静载试验可以测得地基抗力比例系数m值与地面处水平位移之间的关系曲线,如图8所示。

    图 8.  m值随杆件地面处位移关系曲线
    Figure 8.  m value versus ground displacement of foundation

    图8可知,当刚性桩地面处水平位移为10 mm时,m值约为70 MN/m4。通过图8可以获得与地面处水平位移相对应的m值,从而开展刚性基础的设计计算。在此基础上,根据式(4)可以计算得到基础旋转角度,再联立式(12)、式(13)、式(18)—(20)或式(27)—(29)可以计算得到基础地面处水平位移、基础顶面倾斜角度、侧土压力和基底土反力等,其与模型试验结果的对比如图9所示。

    图 9.  理论与试验结果对比分析
    Figure 9.  Comparison analysis of theoretical and test results

    图9(a)(b)(c)可知,随着推扭荷载增大,基础地面处水平位移、基础旋转角度及倾斜角度均随之增大,当H=1.40 kN、T=1.2 kN·m时,基础地面处水平位移为10.97 mm、基础旋转角度为0.30°、倾斜角度为1.61°,基础已达破坏;由图9(d)可知,基础侧土压力与基础倾斜角度成正比,呈中间小两端大分布;从图9(e)可以发现,当H=0.28 kN、T=0.24 kN·m时,基底与土体脱开,随着H-T增大,基底土压力重新分布,后侧基底的土压力增幅较大;由图9(f)可得,当H=1.40 kN、T=1.2 kN·m时,基础荷载水平已超过破坏包络线,说明其已达到破坏。总的来说,基础受力、变形计算结果均与试验结果吻合较好,可以验证前述理论计算方法的合理性。

    以模型试验中的杆件基础为例,进一步探讨扭推比T/H1和地基抗力比例系数m值对刚性矩形基础受力与变形的影响。

    T/H1=0.34,0.64,0.94 m时,基础受力与变形情况如图10所示。

    图 10.  不同扭推比下基础旋转角度与破坏包络线
    Figure 10.  Deformations and failure envelopes of foundation under different torsion push ratios

    图10(a)可得,相同水平荷载分量H下,基础旋转角度随扭推比增加而增大;从图10(b)可以发现,当T/H1由0.34 m增大到0.64 m和0.94 m时,基础破坏时对应的水平荷载分量H分别降低0.11 kN及0.31 kN,此时基础破坏模式由水平变形破坏逐渐转变为扭转破坏。因此,在设计刚性矩形基础时,应综合考虑H-T对基础地基承载能力的削弱效应,避免基础在H-T作用下发生扭转破坏。

    现有研究表明[20, 22]m值主要取决于土体性质及其密实度。由图8可知,试验过程中,随着基础地面处水平位移增大,m值逐渐减小,故参照《建筑桩基技术规范》(JGJ 94—2008)[26]取基础地面处水平位移为10 mm时对应的m值进行计算是偏安全的。为分析土性对基础承载特性的影响,分别取m=20,70,120 MN/m4时,计算得到的基础变形结果如图11所示。

    图 11.  不同m值下基础变形图
    Figure 11.  Deformations of foundation under different m values

    图11可知,在相同荷载水平下,随m值增大,基础在地面处的水平位移和旋转角度均减小。当H=1.40 kN,且m值由20 MN/m4增大到70 MN/m4和120 MN/m4时,对应的基础地面处水平位移分别减小71.42%和83.34%,而基础旋转角度分别减小67.62%和83.33%。因此,对于刚性矩形基础,其上覆回填土体性质及压实度均应满足设计要求,以避免因基础周围土体刚度不够而破坏。

    根据多杆合一杆件的结构特点及承载特性,建立了刚性基础简化计算模型,推导了TH-M 2种荷载模式下基础受力与变形的理论解答,获得了H-T下刚性矩形基础的破坏包络线,通过模型试验验证了理论解答的合理性,进而探讨扭推比T/H1、地基抗力比例系数m值对刚性矩形基础受力与变形的影响,得到如下主要结论:

    (1)由理论解答得到的基础地面处水平位移、旋转角度、倾斜角度、侧土压力及基底土反力计算值与模型试验值吻合良好,验证了理论解答的合理性。

    (2)在H-T作用下,基础破坏包络线整体呈抛物线分布;与单一水平荷载或扭转荷载作用相比,H-T作用将显著降低刚性矩形基础的承载能力,H-T对基础承载能力的削弱效应不容忽视。

    (3)在相同的荷载水平下,基础旋转角度随扭推比增加而增大;而地面处水平位移和旋转角度则随m值增加而减小;为确保刚性矩形基础的安全稳定,其上覆回填土体性质和压实度均应满足设计要求。

  • 图 1  多杆合一杆件基础简化受力模型

    Figure 1. 

    图 2  基础受力与变形平面图

    Figure 2. 

    图 3  模式一下基础受力与变形示意图

    Figure 3. 

    图 4  模式二下基础受力与变形示意图

    Figure 4. 

    图 5  H-T下刚性矩形基础的破坏包络线

    Figure 5. 

    图 6  试验用土的级配曲线

    Figure 6. 

    图 7  模型试验布置图(尺寸单位:cm)

    Figure 7. 

    图 8  m值随杆件地面处位移关系曲线

    Figure 8. 

    图 9  理论与试验结果对比分析

    Figure 9. 

    图 10  不同扭推比下基础旋转角度与破坏包络线

    Figure 10. 

    图 11  不同m值下基础变形图

    Figure 11. 

    表 1  试验土体物理力学性质指标

    Table 1.  Physical and mechanical indexes of test soil

    参数 φ/(°) c/kPa w/% ρdmax/(g·cm−3 Es/MPa Ip
    取值 24.39 26 19.72 1.75 6.93 27.2
      注:φ为内摩擦角;c为黏聚力;w为含水率,ρdmax为最大干密度;Es为压缩模量;Ip为土体塑性指数。
    下载: 导出CSV

    表 2  试验加载方案

    Table 2.  Test loading scheme

    荷载等级 H1/kN H2/kN H/kN T/(kN·m)
    1 0.20 0.13 0.07 0.068
    2 0.40 0.26 0.14 0.136
    3 0.60 0.39 0.21 0.204
    n 0.20n 0.13n 0.07n 0.068n
    下载: 导出CSV
  • [1]

    陆凯诠,史习渊. 城市建成区道路多杆合一工程研究与应用[J]. 上海建设科技,2019(2):24 − 27. [LU Kaiquan,SHI Xiyuan. Research and application of multi-pole integration project in urban built-up area[J]. Shanghai Construction Science & Technology,2019(2):24 − 27. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-6637.2019.02.007

    LU Kaiquan, SHI Xiyuan. Research and application of multi-pole integration project in urban built-up area[J]. Shanghai Construction Science & Technology, 2019(2): 24 − 27. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-6637.2019.02.007

    [2]

    邹新军,徐洞斌,王亚雄. 近海复杂环境下的H-M-T受荷桩内力位移分析[J]. 防灾减灾工程学报,2014,34(6):736 − 741. [ZOU Xinjun,XU Dongbin,WANG Yaxiong. Analysis of piles under H-M-T combined loading in offshore complex environment[J]. Journal of Disaster Prevention and Mitigation Engineering,2014,34(6):736 − 741. (in Chinese with English abstract)]

    ZOU Xinjun, XU Dongbin, WANG Yaxiong. Analysis of piles under H-M-T combined loading in offshore complex environment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(6): 736 − 741. (in Chinese with English abstract)

    [3]

    饶文昌,竺明星. 组合荷载作用下基桩水平承载特性的简化半解析解[J]. 中外公路,2021,41(6):6 − 13. [RAO Wenchang,ZHU Mingxing. Simplified semi-analytical solutions of horizontal bearing characteristics of pile foundation under combined load[J]. Journal of China & Foreign Highway,2021,41(6):6 − 13. (in Chinese with English abstract)]

    RAO Wenchang, ZHU Mingxing. Simplified semi-analytical solutions of horizontal bearing characteristics of pile foundation under combined load[J]. Journal of China & Foreign Highway, 2021, 41(6): 6 − 13. (in Chinese with English abstract)

    [4]

    王飞,闫宇,焦立冬,等. 考虑软化效应的滨海软土区基桩受力与变形特性分析[J]. 中外公路,2024,44(2):1-8. [WANG Fei,YAN Yu,JIAO Lidong,et al. Analysis of the mechanical and deformation characteristics of piles in coastal soft soil area considering softening effect[J]. Journal of China & Foreign Highway,2024,44(2):1-8. (in Chinese with English abstract)]

    [5]

    覃玉兰,邹新军,曹雄. 均质砂土中水平简谐荷载与扭矩联合受荷单桩内力、位移分析[J]. 岩土力学,2020,41(1):147 − 156. [QIN Yulan,ZOU Xinjun,CAO Xiong. Internal forces and deformations of a single pile in uniform sand under combined action of horizontal harmonic load and torque[J]. Rock and Soil Mechanics,2020,41(1):147 − 156. (in Chinese with English abstract)]

    QIN Yulan, ZOU Xinjun, CAO Xiong. Internal forces and deformations of a single pile in uniform sand under combined action of horizontal harmonic load and torque[J]. Rock and Soil Mechanics, 2020, 41(1): 147 − 156. (in Chinese with English abstract)

    [6]

    邹新军,王亚雄,徐洞斌. Gibson地基中V-T联合受荷桩承载力分析[J]. 工程力学,2015,32(8):149 − 155. [ZOU Xinjun,WANG Yaxiong,XU Dongbin. Bearing capacity analysis of piles under V-T combined loading in Gibson subsoil[J]. Engineering Mechanics,2015,32(8):149 − 155. (in Chinese with English abstract)] doi: 10.6052/j.issn.1000-4750.2014.01.0073

    ZOU Xinjun, WANG Yaxiong, XU Dongbin. Bearing capacity analysis of piles under V-T combined loading in Gibson subsoil[J]. Engineering Mechanics, 2015, 32(8): 149 − 155. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2014.01.0073

    [7]

    武科,马明月,范庆来,等. 扭剪荷载作用下桶形基础与土相互作用机理模型试验[J]. 江苏大学学报(自然科学版),2013,34(1):86 − 90. [WU Ke,MA Mingyue,FAN Qinglai,et al. Mechanism model test of interaction between bucket foundation and soil subjected to torsional resistance[J]. Journal of Jiangsu University (Natural Science Edition),2013,34(1):86 − 90. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-7775.2013.01.017

    WU Ke, MA Mingyue, FAN Qinglai, et al. Mechanism model test of interaction between bucket foundation and soil subjected to torsional resistance[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(1): 86 − 90. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-7775.2013.01.017

    [8]

    邹新军,丁仕进,赵灵杰. 水平力(H)-扭矩(T)组合受荷桩承载特性模型试验研究[J]. 湖南大学学报(自然科学版),2017,44(3):126 − 133. [ZOU Xinjun,DING Shijin,ZHAO Lingjie. Model testing investigation on bearing behavior of a single pile under combined H-T loads[J]. Journal of Hunan University (Natural Sciences),2017,44(3):126 − 133. (in Chinese with English abstract)]

    ZOU Xinjun, DING Shijin, ZHAO Lingjie. Model testing investigation on bearing behavior of a single pile under combined H-T loads[J]. Journal of Hunan University (Natural Sciences), 2017, 44(3): 126 − 133. (in Chinese with English abstract)

    [9]

    邹新军,丁仕进,徐洞斌. 中密砂土地基中H-T组合作用下单桩承载特性研究[J]. 土木工程学报,2017,50(11):107 − 114. [ZOU Xinjun,DING Shijin,XU Dongbin. Bearing behavior of a single pile in ground of medium-dense sand under the combined H-T loads[J]. China Civil Engineering Journal,2017,50(11):107 − 114. (in Chinese with English abstract)]

    ZOU Xinjun, DING Shijin, XU Dongbin. Bearing behavior of a single pile in ground of medium-dense sand under the combined H-T loads[J]. China Civil Engineering Journal, 2017, 50(11): 107 − 114. (in Chinese with English abstract)

    [10]

    郭沛翰,邹新军. 均质砂土地基中竖向力–水平力–桩顶扭矩共同作用下单桩承载特性试验研究[J]. 岩石力学与工程学报,2018,37(11):2593 − 2600. [GUO Peihan,ZOU Xinjun. Bearing capacity of a single pile in sand under combined vertical force-horizontal force-torque load[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2593 − 2600. (in Chinese with English abstract)]

    GUO Peihan, ZOU Xinjun. Bearing capacity of a single pile in sand under combined vertical force-horizontal force-torque load[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2593 − 2600. (in Chinese with English abstract)

    [11]

    HU Zhihong,MCVAY M,BLOOMQUIST D,et al. Influence of torque on lateral capacity of drilled shafts in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(4):456 − 464. doi: 10.1061/(ASCE)1090-0241(2006)132:4(456)

    [12]

    王思,张永杰,程鑫,等. 大直径超长桩承载性状影响研究[J]. 交通科学与工程,2021,37(2):68 − 75. [WANG Si,ZHANG Yongjie,CHENG Xin,et al. Numerical analysis of influence of soil strength of pile tip on bearing capacity of overlong pile[J]. Journal of Transport Science and Engineering,2021,37(2):68 − 75. (in Chinese with English abstract)]

    WANG Si, ZHANG Yongjie, CHENG Xin, et al. Numerical analysis of influence of soil strength of pile tip on bearing capacity of overlong pile[J]. Journal of Transport Science and Engineering, 2021, 37(2): 68 − 75. (in Chinese with English abstract)

    [13]

    武科,马明月,栾茂田,等. 扭剪荷载作用下桶形基础承载性能的弹塑性有限元数值分析[J]. 应用基础与工程科学学报,2012,20(5):777 − 786. [WU Ke,MA Mingyue,LUAN Maotian,et al. Numerical analysis of bearing capacity behavior of bucket foundation subjected to torsion shear loading based on elasto-plastic FEM[J]. Journal of Basic Science and Engineering,2012,20(5):777 − 786. (in Chinese with English abstract)]

    WU Ke, MA Mingyue, LUAN Maotian, et al. Numerical analysis of bearing capacity behavior of bucket foundation subjected to torsion shear loading based on elasto-plastic FEM[J]. Journal of Basic Science and Engineering, 2012, 20(5): 777 − 786. (in Chinese with English abstract)

    [14]

    范庆来,栾茂田. V-H-T荷载空间内海上风机桶形基础破坏包络面特性分析[J]. 土木工程学报,2010,43(4):113 − 118. [FAN Qinglai,LUAN Maotian. Failure envelopes of bucket foundation for offshore wind turbines in V-H-T loading space[J]. China Civil Engineering Journal,2010,43(4):113 − 118. (in Chinese with English abstract)]

    FAN Qinglai, LUAN Maotian. Failure envelopes of bucket foundation for offshore wind turbines in V-H-T loading space[J]. China Civil Engineering Journal, 2010, 43(4): 113 − 118. (in Chinese with English abstract)

    [15]

    丁梓涵,赵其华,彭社琴,等. 地基土强度对桩土水平作用特性及m值影响的模型试验研究[J]. 水文地质工程地质,2016,43(3):113 − 117. [DING Zihan,ZHAO Qihua,PENG Sheqin,et al. Experimental study on the effect of strength of foundation soil on the pile-soil interaction and m value[J]. Hydrogeology & Engineering Geology,2016,43(3):113 − 117. (in Chinese with English abstract)]

    DING Zihan, ZHAO Qihua, PENG Sheqin, et al. Experimental study on the effect of strength of foundation soil on the pile-soil interaction and m value[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 113 − 117. (in Chinese with English abstract)

    [16]

    张玲,陈金海,欧强. 基于能量法的轴横向荷载作用下单桩受力变形分析[J]. 水文地质工程地质,2020,47(5):81 − 91. [ZHANG Ling,CHEN Jinhai,OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology,2020,47(5):81 − 91. (in Chinese with English abstract)]

    ZHANG Ling, CHEN Jinhai, OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 81 − 91. (in Chinese with English abstract)

    [17]

    邓时容,肖世国. 嵌固段顶部拓宽型抗滑桩计算方法[J]. 中国地质灾害与防治学报,2022,33(4):84 − 91. [DENG Shirong,XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):84 − 91. (in Chinese with English abstract)]

    DENG Shirong, XIAO Shiguo. Calculation method of stabilizing piles with broadened top at the built-in section[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 84 − 91. (in Chinese with English abstract)

    [18]

    任青阳,赵梦园,谢忠伟,等. 抗滑桩应变特征与内力非线性研究[J]. 水文地质工程地质,2021,48(2):114 − 124. [REN Qingyang,ZHAO Mengyuan,XIE Zhongwei,et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology,2021,48(2):114 − 124. (in Chinese with English abstract)]

    REN Qingyang, ZHAO Mengyuan, XIE Zhongwei, et al. A study of the strain characteristics and internal force nonlinearity of anti-slide pile[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 114 − 124. (in Chinese with English abstract)

    [19]

    闫玉平. 越顶破坏模式下沉埋桩受荷段及沉埋段推力算法[J]. 水文地质工程地质,2023,50(3):76 − 84. [YAN Yuping. Calculation method of thrust force of the embedded stabilizing piles under the overtop-sliding failure mode[J]. Hydrogeology & Engineering Geology,2023,50(3):76 − 84. (in Chinese with English abstract)]

    YAN Yuping. Calculation method of thrust force of the embedded stabilizing piles under the overtop-sliding failure mode[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 76 − 84. (in Chinese with English abstract)

    [20]

    赵小晴,詹伟,严鑫,等. 水平荷载下沉井在砂土中变位特性的试验与模拟研究[J]. 岩土工程学报,2021,43(增刊2):80 − 83. [ZHAO Xiaoqing,ZHAN Wei,YAN Xin,et al. Experimental study and simulation on deformation characteristics of caissons in sand under horizontal loads[J]. Chinese Journal of Geotechnical Engineering,2021,43(Sup 2):80 − 83. (in Chinese with English abstract)]

    ZHAO Xiaoqing, ZHAN Wei, YAN Xin, et al. Experimental study and simulation on deformation characteristics of caissons in sand under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Sup 2): 80 − 83. (in Chinese with English abstract)

    [21]

    邱力杰,尹平保,王礼华,等. 考虑空间效应的深长基坑围护结构受力与变形分析[J]. 交通科学与工程,2023,39(4):70 − 79. [QIU Lijie,YIN Pingbao,WANG Lihua,et al. Analysis of stress and deformation of retaining structure in deep foundation pit based on spatial effect[J]. Journal of Transport Science and Engineering,2023,39(4):70 − 79. (in Chinese with English abstract)]

    QIU Lijie, YIN Pingbao, WANG Lihua, et al. Analysis of stress and deformation of retaining structure in deep foundation pit based on spatial effect[J]. Journal of Transport Science and Engineering, 2023, 39(4): 70 − 79. (in Chinese with English abstract)

    [22]

    穆保岗,李旭,龚维明,等. 水平荷载长期作用下沉井变位特性的模型试验研究[J]. 岩土工程学报,2017,39(8):1388 − 1397. [MU Baogang,LI Xu,GONG Weiming,et al. Model tests on deformation characteristics of caissons under long-term horizontal load[J]. Chinese Journal of Geotechnical Engineering,2017,39(8):1388 − 1397. (in Chinese with English abstract)] doi: 10.11779/CJGE201708005

    MU Baogang, LI Xu, GONG Weiming, et al. Model tests on deformation characteristics of caissons under long-term horizontal load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1388 − 1397. (in Chinese with English abstract) doi: 10.11779/CJGE201708005

    [23]

    吴炯,汪梅,程东华. 输电线路窄基铁塔基础抗倾覆公式[J]. 电力建设,2012,33(6):43 − 46. [WU Jiong,WANG Mei,CHENG Donghua. Anti-overturning formula for narrow-base tower foundation in transmission line[J]. Electric Power Construction,2012,33(6):43 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7229.2012.06.011

    WU Jiong, WANG Mei, CHENG Donghua. Anti-overturning formula for narrow-base tower foundation in transmission line[J]. Electric Power Construction, 2012, 33(6): 43 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7229.2012.06.011

    [24]

    中华人民共和国交通运输部. 公路桥涵地基与基础设计规范:JTG 3363—2019[S]. 北京:人民交通出版社,2019. [Ministry of Transport of the People’s Republic of China. Specifications for design of foundation of highway bridges and culverts:JTG 3363—2019[S]. Beijing:China Communications Press,2019. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Specifications for design of foundation of highway bridges and culverts: JTG 3363—2019[S]. Beijing: China Communications Press, 2019. (in Chinese)

    [25]

    交通部公路科学研究院. 公路交通标志和标线设置手册:JTG D82—2009[M]. 北京:人民交通出版社,2009. [Research Institute of Highway Ministry of Transport. Road traffic signs and markings setting manual:JTG D82—2009[M]. Beijing:China Communications Press,2009. (in Chinese)]

    Research Institute of Highway Ministry of Transport. Road traffic signs and markings setting manual: JTG D82—2009[M]. Beijing: China Communications Press, 2009. (in Chinese)

    [26]

    中华人民共和国建房和城乡建设部. 建筑桩基技术规范:JGJ 94—2008[S]. 北京:中国建筑工业出版社,2008. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building pile foundation:JGJ 94—2008[S]. Beijing:China Construction Industry Press,2008. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building pile foundation: JGJ 94—2008[S]. Beijing: China Construction Industry Press, 2008. (in Chinese)

    [27]

    张旭. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 工业建筑,2022,52(5):187 − 193. [ZHANG Xu. Ultimate bearing characteristics and envelope analysis of the composite caisson foundation with a single pile in combined loading modes[J]. Industrial Construction,2022,52(5):187 − 193. (in Chinese with English abstract)]

    ZHANG Xu. Ultimate bearing characteristics and envelope analysis of the composite caisson foundation with a single pile in combined loading modes[J]. Industrial Construction, 2022, 52(5): 187 − 193. (in Chinese with English abstract)

    [28]

    中华人民共和国建房和城乡建设部. 建筑基桩检测技术规范:JGJ 106—2014[S]. 北京:中国建筑工业出版社,2014. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for detection of building foundation piles:JGJ 106—2014[S]. Beijing:China Construction Industry Press,2014. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for detection of building foundation piles: JGJ 106—2014[S]. Beijing: China Construction Industry Press, 2014. (in Chinese)

    [29]

    中华人民共和国交通运输部. 公路桥梁抗风设计规范:JTG/T 3360-01—2018[S]. 北京:人民交通出版社,2018. [Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges:JTG/T 3360-01—2018[S]. Beijing:China Communications Press,2018. (in Chinese)]

    Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018. (in Chinese)

  • 期刊类型引用(1)

    1.  符传飞,覃显达,伍晗曦,刘江波,尹平保,陈璐,方敏. 考虑侧土压力的刚性矩形基础设计计算方法. 交通科学与工程. 2025(01): 148-156 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、PDF下载量统计信息摘要浏览量PDF下载量2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06051015Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.5 %DOWNLOAD: 1.5 %摘要: 98.5 %摘要: 98.5 %DOWNLOAD摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 15.8 %其他: 15.8 %其他: 1.8 %其他: 1.8 %上海: 1.8 %上海: 1.8 %十堰: 0.9 %十堰: 0.9 %南昌: 0.9 %南昌: 0.9 %南通: 0.9 %南通: 0.9 %台州: 3.5 %台州: 3.5 %嘉兴: 1.8 %嘉兴: 1.8 %天津: 2.6 %天津: 2.6 %常德: 1.8 %常德: 1.8 %成都: 1.8 %成都: 1.8 %扬州: 3.5 %扬州: 3.5 %格兰特县: 0.9 %格兰特县: 0.9 %温州: 0.9 %温州: 0.9 %湖州: 1.8 %湖州: 1.8 %漯河: 3.5 %漯河: 3.5 %烟台: 0.9 %烟台: 0.9 %石家庄: 7.0 %石家庄: 7.0 %芒廷维尤: 36.0 %芒廷维尤: 36.0 %芝加哥: 1.8 %芝加哥: 1.8 %莫斯科: 4.4 %莫斯科: 4.4 %衢州: 0.9 %衢州: 0.9 %西雅图: 0.9 %西雅图: 0.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.9 %郑州: 0.9 %长沙: 0.9 %长沙: 0.9 %阿坝: 1.8 %阿坝: 1.8 %其他其他上海十堰南昌南通台州嘉兴天津常德成都扬州格兰特县温州湖州漯河烟台石家庄芒廷维尤芝加哥莫斯科衢州西雅图邯郸郑州长沙阿坝Highcharts.com

(11)

(2)

计量
  • 文章访问数:  287
  • PDF下载数:  63
  • 施引文献:  1
出版历程
收稿日期:  2023-07-19
修回日期:  2023-12-13
刊出日期:  2024-07-15

目录

  • 表 1.  试验土体物理力学性质指标
    Table 1.  Physical and mechanical indexes of test soil
    参数 φ/(°) c/kPa w/% ρdmax/(g·cm−3 Es/MPa Ip
    取值 24.39 26 19.72 1.75 6.93 27.2
      注:φ为内摩擦角;c为黏聚力;w为含水率,ρdmax为最大干密度;Es为压缩模量;Ip为土体塑性指数。
     | Show Table
    DownLoad: CSV
  • 表 2.  试验加载方案
    Table 2.  Test loading scheme
    荷载等级 H1/kN H2/kN H/kN T/(kN·m)
    1 0.20 0.13 0.07 0.068
    2 0.40 0.26 0.14 0.136
    3 0.60 0.39 0.21 0.204
    n 0.20n 0.13n 0.07n 0.068n
     | Show Table
    DownLoad: CSV