孔隙介质非达西渗流Forchheimer方程量化评价

袁帅, 李仲夏, 熊涛, 杨赟, 王宗星. 孔隙介质非达西渗流Forchheimer方程量化评价[J]. 水文地质工程地质, 2024, 51(3): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202308015
引用本文: 袁帅, 李仲夏, 熊涛, 杨赟, 王宗星. 孔隙介质非达西渗流Forchheimer方程量化评价[J]. 水文地质工程地质, 2024, 51(3): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202308015
YUAN Shuai, LI Zhongxia, XIONG Tao, YANG Yun, WANG Zongxing. Quantitative evaluation of forchheimer equation for non-darcy flow in porous media[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202308015
Citation: YUAN Shuai, LI Zhongxia, XIONG Tao, YANG Yun, WANG Zongxing. Quantitative evaluation of forchheimer equation for non-darcy flow in porous media[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 12-22. doi: 10.16030/j.cnki.issn.1000-3665.202308015

孔隙介质非达西渗流Forchheimer方程量化评价

  • 基金项目: 国家自然科学基金项目(41402204);中央高校基本科研业务费专项资金项目(CUG170410)
详细信息
    作者简介: 袁帅(1999—),男,硕士研究生,主要从事地下水渗流研究。E-mail:shuai_yuan@cug.edu.cn
    通讯作者: 李仲夏(1990—),男,副教授,主要从事地下水渗流的教学与科研工作。E-mail:zhongxia_li@cug.edu.cn
  • 中图分类号: P641.2

Quantitative evaluation of forchheimer equation for non-darcy flow in porous media

More Information
  • Forchheimer方程作为非达西渗流中广泛应用的基本方程之一,方程中$ A $、$ B $系数的确定一直是孔隙介质渗流领域中的热点及难点,不同学者根据渗流试验结果提出了不同的Forchheimer方程$ A $、$ B $系数的经验公式,但对于均质以及混合粒径的非均质条件下评价各经验公式适用性的研究较少。因此在渗流阻力试验的基础上,采用归一化目标函数和线性回归法评价了Forchheimer方程经验公式的适用性,为不同孔隙介质条件下Forchheimer方程经验公式的选取提供参考。结果表明:对于均质孔隙介质,Sidiropoulou公式对水力梯度有着很好的预测效果;对于2种混合粒径孔隙介质,在使用平均粒径的基础上,还应考虑混合粒径的质量比和大小因素,Macdonald公式的预测效果受混合粒径的质量比和大小影响较小,Kadlec and Knight公式对于水力梯度的预测结果较为稳定;对于5种混合粒径孔隙介质,使用d60作为特征粒径进行预测的效果较好,Kadlec and Knight公式对于系数A的预测效果较好,Ergun公式对于系数B的预测效果较好。研究结果能够为工程中均质及非均质松散砂砾石孔隙介质渗流计算的Forchheimer方程的选取提供依据。

  • 加载中
  • 图 1  非达西渗流试验装置示意图

    Figure 1. 

    图 2  均质与非均质孔隙介质速度与水力梯度关系图

    Figure 2. 

    图 3  不同经验公式下Forchheimer方程系数$ A $$ B $的归一化目标函数值变化图

    Figure 3. 

    图 4  均质孔隙介质各经验公式线性回归法评价结果

    Figure 4. 

    图 5  单一粒径下各经验公式水力梯度的归一化目标函数值

    Figure 5. 

    图 6  2 种混合平均粒径下系数$ A $$ B $的归一化目标函数法和线性回归法评估结果

    Figure 6. 

    图 7  2 种混合粒径下各经验公式水力梯度的归一化目标函数值

    Figure 7. 

    图 8  4 种特征粒径下各经验公式评价系数$ A $$ B $归一化目标函数值

    Figure 8. 

    图 9  4 种特征粒径下各经验公式线性回归法评价结果

    Figure 9. 

    表 2  非均质孔隙介质渗流阻力试验特征值

    Table 2.  Experimental characteristic value of seepage resistance in the heterogeneous porous media

    编号 d50/mm $ J=AV+B{V}^{2} $ 混合粒径/mm 质量比
    A B R2
    H2-1 1.31 85.74 1106.89 0.9999 1.075,1.850 7∶3
    H2-2 1.46 76.98 203.3 0.9999 5∶5
    H2-3 1.62 53.88 294.13 0.9999 3∶7
    H2-4 1.70 113.27 10424.5 0.999 1.075,3.175 7∶3
    H2-5 2.12 97.42 3803.17 0.9998 5∶5
    H2-6 2.54 67.84 970.01 0.9995 3∶7
    H2-7 2.25 17.18 510.19 0.9989 1.850,3.175 7∶3
    H2-8 2.51 13.59 628.74 0.9995 5∶5
    H2-9 2.77 12.23 398.62 0.9997 3∶7
    H2-10 1.98 28.17 683.36 0.9993 1.475,3.175 7∶3
    H2-11 2.32 24.02 728.96 0.9995 5∶5
    H2-12 2.66 16.85 808.05 0.9996 3∶7
    编号 d50/mm $ J=AV+B{V}^{2} $ d10/mm d60/mm dm/mm s dm-s/mm Cu
    A B R2
    H3-1 1.075 53.68 2323.68 0.9999 0.8 1.15 1.37 0.48 0.9 1.4
    H3-2 59.71 1520.56 0.9997 0.8 1.52 1.97 1 0.9 1.9
    H3-3 78.21 1043.18 0.9999 0.8 1.85 1.82 0.92 0.96 2.3
    H3-4 1.475 31.13 982.2 0.99949 1.12 1.6 2.03 0.78 1.25 1.4
    H3-5 45.47 866.62 0.99986 0.75 1.55 2.04 0.91 1.01 1.9
    H3-6 55.5 1057.16 0.99986 0.75 1.75 1.64 0.63 1.13 2.3
    H3-7 1.85 19.77 776.06 0.9998 1.475 2.05 2.44 0.76 1.68 1.4
    H3-8 25.05 866.72 0.9999 1.075 2.05 2.32 0.89 1.55 1.9
    H3-9 37.54 853.48 0.9999 0.91 2.05 2.38 0.83 1.43 2.3
      注:dm为矩算术法计算的平均粒径;s为标准偏差;dm-s为矩算术法平均粒径与标准偏差的差值的新特征粒径。
    下载: 导出CSV

    表 1  均质孔隙介质渗流阻力试验特征值

    Table 1.  Experimental characteristic value of seepage resistance in the homogeneous porous media

    编号 d50/mm  $ J=AV+B{V}^{2} $
    A B R2
    H1-1 1.075 90.411 1973.4 0.9999
    H1-2 1.475 57.596 1122.6 0.9997
    H1-3 1.850 56.67 397.92 0.9997
    H1-4 2.500 39.264 689.46 0.9996
    H1-5 3.170 33.163 724.69 0.9998
    下载: 导出CSV

    表 3  不同质量比和不同混合粒径下各经验公式预测系数$ A $$ B $的归一化目标函数值

    Table 3.  NOF values in the empirical formulas for predicting coefficients $ \mathit{A} $ and $ \mathit{B} $ under different mass ratios and different mixed particle sizes

    混合方式 系数 经验公式预测系数AB的归一化目标函数值
    Ergun Irmay Macdonald Kovács Kadlec and Knight Sidiropoulou
    不同质量比 7∶3 A 0.775 0.590 0.516 0.827 0.646 1.102
    B 4.147 13.324 1.942 2.872 3.556 2.940
    5∶5 A 1.138 0.878 0.752 1.207 0.613 1.348
    B 1.462 5.451 0.684 0.966 1.224 1.044
    3∶7 A 1.062 0.832 0.724 1.124 0.641 1.122
    B 0.312 1.482 0.595 0.455 0.368 0.398
    不同粒径/mm 1.075,3.175 A 1.325 0.935 0.725 1.422 0.361 1.774
    B 4.556 14.923 2.025 3.101 3.883 3.227
    1.475,3.175 A 0.308 0.427 0.492 0.279 0.809 0.209
    B 0.352 1.048 0.653 0.520 0.427 0.498
    1.850,3.175 A 0.479 0.568 0.617 0.457 0.852 0.437
    B 0.488 0.579 0.730 0.625 0.551 0.592
    下载: 导出CSV
  • [1]

    BEAR J,BRAESTER C. On the flow of two immscible fluids in fractured porous media[C]//Fundamentals of Transport Phenomena in Porous Media. Amsterdam:Elsevier,1972:177-202.

    [2]

    张东,刘晓丽,王恩志. 非均匀多孔介质等效渗透率的普适表达式[J]. 水文地质工程地质,2020,47(4):35 − 42. [ZHANG Dong,LIU Xiaoli,WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2020,47(4):35 − 42. (in Chinese with English abstract)]

    ZHANG Dong, LIU Xiaoli, WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35 − 42. (in Chinese with English abstract)

    [3]

    丁瑜,饶云康,倪强,等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质,2019,46(3):108 − 116. [DING Yu,RAO Yunkang,NI Qiang,et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019,46(3):108 − 116. (in Chinese with English abstract)]

    DING Yu, RAO Yunkang, NI Qiang, et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 108 − 116. (in Chinese with English abstract)

    [4]

    董晓飞, 胡成, 曹孟雄, 等. 裂隙介质渗透性的升尺度转换研究[J]. 地质科技通报,2023,42(4):259 − 267. [DONG Xiaofei, HU Cheng, CAO Mengxiong, et al. Study on the upscaling transformation of hydraulic conductivity in fractured media[J]. Bulletin of Geological Science and Technology,2023,42(4):259 − 267. (in Chinese with English abstract)]

    DONG Xiaofei, HU Cheng, CAO Mengxiong, et al. Study on the upscaling transformation of hydraulic conductivity in fractured media[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 259 − 267. (in Chinese with English abstract)

    [5]

    明瑞卿,张全立,罗淮东,等. 低渗透底水气藏压裂井见水时间预测模型改进研究[J]. 地质科技情报,2019,38(6):91 − 95. [MING Ruiqing,ZHANG Quanli,LUO Huaidong,et al. Optimization of water breakthrough time for fractured wells in low permeability gas reservoirs with bottom water[J]. Geological Science and Technology Information,2019,38(6):91 − 95. (in Chinese with English abstract)]

    MING Ruiqing, ZHANG Quanli, LUO Huaidong, et al. Optimization of water breakthrough time for fractured wells in low permeability gas reservoirs with bottom water[J]. Geological Science and Technology Information, 2019, 38(6): 91 − 95. (in Chinese with English abstract)

    [6]

    SONG Wenhui,YAO Jun,MA Jingsheng,et al. A pore structure based real gas transport model to determine gas permeability in nanoporous shale[J]. International Journal of Heat and Mass Transfer,2018,126:151 − 160. doi: 10.1016/j.ijheatmasstransfer.2018.05.012

    [7]

    FORCHHEIMER P. Wasserbewegung durch boden[J]. Z Ver Deutsch Ing,1901,45(45):1782 − 1788.

    [8]

    CIMOLIN F,DISCACCIATI M. Navier-Stokes/Forchheimer models for filtration through porous media[J]. Applied Numerical Mathematics,2013,72:205 − 224. doi: 10.1016/j.apnum.2013.07.001

    [9]

    CHEN Zhangxin,LYONS S L,QIN Guan. Derivation of the forchheimer law via homogenization[J]. Transport in Porous Media,2001,44(2):325 − 335. doi: 10.1023/A:1010749114251

    [10]

    GIORGI T. Derivation of the forchheimer law via matched asymptotic expansions[J]. Transport in Porous Media,1997,29(2):191 − 206. doi: 10.1023/A:1006533931383

    [11]

    IRMAY S. On the theoretical derivation of Darcy and Forchheimer formulas[J]. Eos,Transactions American Geophysical Union,1958,39(4):702 − 707. doi: 10.1029/TR039i004p00702

    [12]

    DUDGEON C R. An experimental study of the flow of water through coarse granular media[J]. La Houille Blanche,1966,52(7):785 − 801. doi: 10.1051/lhb/1966049

    [13]

    BORDIER C,ZIMMER D. Drainage equations and non-Darcian modelling in coarse porous media or geosynthetic materials[J]. Journal of Hydrology,2000,228(3/4):174 − 187.

    [14]

    ZENG Zhengwen,GRIGG R. A criterion for non-darcy flow in porous media[J]. Transport in Porous Media,2006,63(1):57 − 69. doi: 10.1007/s11242-005-2720-3

    [15]

    REDDY N B,RAO P R. Effect of convergence on nonlinear flow in porous media[J]. Journal of Hydraulic Engineering,2006,132(4):420 − 427. doi: 10.1061/(ASCE)0733-9429(2006)132:4(420)

    [16]

    MATHIAS S A,TODMAN L C. Step-drawdown tests and the Forchheimer equation[J]. Water Resources Research,2010,46(7):W07514.

    [17]

    SKOGESTAD J O,KEILEGAVLEN E,NORDBOTTEN J M. Domain decomposition strategies for nonlinear flow problems in porous media[J]. Journal of Computational Physics,2013,234:439 − 451. doi: 10.1016/j.jcp.2012.10.001

    [18]

    李仲夏. 孔隙介质渗流阻力实验及数值模拟研究[D]. 武汉:中国地质大学,2020. [LI Zhongxia. The experimental and numerical simulation study of seepage resistance in porous media[D]. Wuhan:China University of Geosciences,2020. (in Chinese with English Abstract)]

    LI Zhongxia. The experimental and numerical simulation study of seepage resistance in porous media[D]. Wuhan: China University of Geosciences, 2020. (in Chinese with English Abstract)

    [19]

    ERGUN S. Fluid flow through packed columns[J]. Chem Eng Prog,1952,48(45):89 − 94.

    [20]

    IRMAY S. Theoretical models of flow through porous media,RILEM Symp. Transfer of Water in porous media,Paris[J]. Bull RILEM,1964,29(45):37 − 43.

    [21]

    黄琨. 孔隙介质渗流基本方程的探索[D]. 武汉:中国地质大学,2012. [HUANG Kun. Exploration of the basic seepage equation in porous media[D]. Wuhan:China University of Geosciences,2012. (in Chinese with English abstract)]

    HUANG Kun. Exploration of the basic seepage equation in porous media[D]. Wuhan: China University of Geosciences, 2012. (in Chinese with English abstract)

    [22]

    KOVACS G. Developments in Water Science -Seepage Hydraulics[M]. Elsevier,Amsterdam,1981.

    [23]

    MACDONALD I F,EL-SAYED M S,MOW K,et al. Flow through porous media-the Ergun equation revisited[J]. Industrial & Engineering Chemistry Fundamentals,1979,18(3):199 − 208.

    [24]

    KADLEC R H,KNIGHT R L. Treatment Wetlands[M]. Treatment Wetlands,1996.

    [25]

    SIDIROPOULOU M G,MOUTSOPOULOS K N,TSIHRINTZIS V A. Determination of Forchheimer equation coefficients a and b[J]. Hydrological Processes,2007,21(4):534 − 554. doi: 10.1002/hyp.6264

    [26]

    VENKATARAMAN P,RAO P R M. Darcian,transitional,and turbulent flow through porous media[J]. Journal of Hydraulic Engineering,1998,124(8):840 − 846. doi: 10.1061/(ASCE)0733-9429(1998)124:8(840)

    [27]

    张文娟,王媛,倪小东. Forchheimer型非达西渗流参数特征分析[J]. 水电能源科学,2014,32(1):52 − 54. [ZHANG Wenjuan,WANG Yuan,NI Xiaodong. Analysis of parameters characteristics of forchheimer’s non-darcy seepage[J]. Water Resources and Power,2014,32(1):52 − 54. (in Chinese with English abstract)]

    ZHANG Wenjuan, WANG Yuan, NI Xiaodong. Analysis of parameters characteristics of forchheimer’s non-darcy seepage[J]. Water Resources and Power, 2014, 32(1): 52 − 54. (in Chinese with English abstract)

    [28]

    SALAHI M B,SEDGHI-ASL M,PARVIZI M. Nonlinear flow through a packed-column experiment[J]. Journal of Hydrologic Engineering,2015,20(9):4015003. doi: 10.1061/(ASCE)HE.1943-5584.0001166

    [29]

    MOUTSOPOULOS K N,PAPASPYROS I N E,TSIHRINTZIS V A. Experimental investigation of inertial flow processes in porous media[J]. Journal of Hydrology,2009,374(3/4):242 − 254.

    [30]

    WARD J C. Turbulent flow in porous media[J]. Journal of the Hydraulics Division,1964,90(5):1 − 12. doi: 10.1061/JYCEAJ.0001096

    [31]

    HUANG K,WAN J W,CHEN C X,et al. Experimental investigation on water flow in cubic arrays of spheres[J]. Journal of Hydrology,2013,492:61 − 68. doi: 10.1016/j.jhydrol.2013.03.039

    [32]

    SEDGHI-ASL M,RAHIMI H,SALEHI R. Non-darcy flow of water through a packed column test[J]. Transport in Porous Media,2014,101(2):215 − 227. doi: 10.1007/s11242-013-0240-0

    [33]

    DAN Hancheng,HE Linhua,XU Bo. Experimental investigation on non-darcian flow in unbound graded aggregate material of highway pavement[J]. Transport in Porous Media,2016,112(1):189 − 206. doi: 10.1007/s11242-016-0640-z

    [34]

    SHI Wenhao,YANG Tianhong,YU Shibo. Experimental investigation on non-darcy flow behavior of granular limestone with different porosity[J]. Journal of Hydrologic Engineering,2020,25(8):6020004. doi: 10.1061/(ASCE)HE.1943-5584.0001966

    [35]

    VAN LOPIK J H,SNOEIJERS R,VAN DOOREN T C G W,et al. The effect of grain size distribution on nonlinear flow behavior in sandy porous media[J]. Transport in Porous Media,2017,120(1):37 − 66. doi: 10.1007/s11242-017-0903-3

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1478
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2023-08-05
修回日期:  2023-09-13
刊出日期:  2024-05-15

目录