Hydrogeochemical characteristics and hydrothermal genesis model of the fracture zone in the southeastern foothills of Taihang Mountains
-
摘要:
太行山东南麓断裂带发育,赋存丰富的中低温地热资源,然而,该地区深部地热水的水热成因模式依然不清楚。通过55组地热水和38组浅层地下水的水化学组分特征,研究离子组分来源及其运移规律,并借助同位素特征分析地热水补给来源,在此基础上分析深部热储的水岩平衡状态、热储温度和热循环深度。结果表明:研究区属对流—传导复合型地热系统,地热水整体处于氧化环境,离子组分以${\mathrm{HCO}}_3^- $和Na+为主,主要受盐岩和碳酸盐岩等矿物的溶解及阳离子交替吸附作用控制;地热水的补给高程为1 010~1 153 m,表明地热水补给区位于太行山东南麓西部的太行山地区;地热水循环深度范围为1 125~4 468 m;混合比例法估算汤阴断陷深层热储温度达到110~160 °C,而汤阴断陷东部的内黄凸起地区为80~110 °C,二者热储温度差别源自汤阴断陷两侧深切地幔的汤东、汤西深大断裂导热导水条件良好,以及内黄凸起的基岩埋深较浅,上伏盖层薄,热能更容易散失。本研究揭示了太行山东南麓地热系统的水文地球化学特征和水热成因模式,为该区地热资源开发利用提供重要依据。
Abstract:The fracture zone in the southeast foothills of the Taihang Mountains is well developed and endowed with abundant medium and low temperature geothermal resources. However, the hydrothermal genesis pattern of deep geothermal water in this area remains unclear. Based on the hydrochemical composition characteristics of 55 geothermal water and 38 shallow groundwater, this study analyzed the source and migration law of ion components, and the recharge source of geothermal water leveraging isotope characteristics. On this basis, the water-rock equilibrium state, temperature, and depth of thermal cycle of deep thermal reservoirs were revealed. The results show that the study area is a convective-conducting composite geothermal system, and the geothermal waters as a whole are in an oxidizing environment, with the ionic fractions dominated by ${\mathrm{HCO}}_3^- $ and Na+, which are mainly controlled by the dissolution of minerals, such as salt rock and carbonate, as well as by the cation exchange. Furthermore, the recharge elevation of the geothermal water ranges from 1 010 to 1 153 m, which indicates that the recharge area of the geothermal water is located in the western part of the Taihang Mountains. The depth of the circulation ranges from 1 125 to 4 468 m. The estimation of the mixing ratio method indicates that the temperature of the deep thermal storage of the Tangyin Rift reaches 110 to 160 °C, while that of the Neihuang Uplift is 80 to 110 °C. The difference in thermal reservoir temperature is caused by the good conditions of heat and water conductivity of Tangdong and Tangxi deep faults on both sides of the Tangyin fault, and the shallow buried depth of bedrock of the Neihuang Uplift with the thin overlying cap rock, which makes the heat energy more easily dissipated. The study reveals the hydrogeochemical characteristics and hydrothermal genesis model of the geothermal system at the southeastern foot of Taihang Mountain and provides a important basis for the exploitation and utilization of geothermal resources in this area.
-
-
表 1 地热流体水化学及同位素分析结果[15]
Table 1. Water chemistry and isotopic values of the hydrothermal fluids
分区 编号 水化学类型 pH 离子质量浓度/(mg·L−1) 同位素含量/‰ K++Na+ Ca2+ Mg2+ Cl− ${\mathrm{SO}}_4^{2-} $ ${\mathrm{HCO}}_3^- $ H2SiO3 TDS δD δ18O 1 DR-15 Cl•SO4—Na 8.06 920.31 70.76 21.77 1061.20 637.50 221.32 25.06 2843 DR-16 Cl—Na 8.01 727.83 58.46 23.56 808.86 367.00 306.32 30.37 2164 DR-21 HCO3•SO4—Na•Ca 8.29 84.98 64.20 30.20 32.58 171.00 282.46 25.25 547 DR-23 Cl•SO4—Na 8.39 616.78 154.41 5.65 670.32 641.44 35.21 80.47 2106 DR-43 Cl•SO4—Na 8.07 638.34 33.57 14.90 642.03 360.75 332.01 25.06 1875 DR-47 Cl•HCO3—Na 7.70 627.50 26.55 9.45 699.11 234.39 337.01 24.74 1796 DR-48 Cl•SO4—Na 7.67 909.78 43.47 13.20 961.12 506.72 351.60 29.80 2634 2 DR-14 HCO3•SO4—Na 8.70 281.51 8.41 1.42 119.89 171.00 336.89 28.50 793 DR-17 Cl•SO4—Na 7.88 1023.64 108.80 21.96 1191.80 665.00 172.44 28.39 3120 DR-18 Cl•SO4—Na 7.78 1121.64 132.16 31.82 1274.90 948.45 120.51 26.16 3591 DR-19 Cl•SO4—Na 7.78 1028.65 123.65 14.23 1178.32 745.32 121.85 28.15 3028 DR-20 Cl•HCO3—Na 8.26 519.31 17.48 5.38 465.28 182.50 358.92 35.88 1307 DR-22 Cl•SO4—Na 7.50 1021.00 120.00 22.23 1164.00 833.42 162.01 58.03 3289 DR-26 HCO3•Cl—Na 8.15 401.37 10.02 6.08 240.71 205.57 474.13 1377 DR-27 Cl•SO4—Na 7.60 970.00 122.24 13.97 1087.96 816.51 116.55 3184 DR-32 Cl—Na 7.15 1120.27 66.12 15.04 1365.00 505.60 256.40 26.00 3222 −76.0 −10.00 3 DR-28 HCO3—Na 7.88 434.29 10.00 6.53 204.80 146.30 602.60 1404 DR-30 Cl—Na 7.11 1309.03 102.50 29.07 1628.00 612.10 317.50 26.00 3861 −75.0 −10.00 DR-31 SO4•Cl—Na 7.28 858.79 92.56 18.04 606.00 980.40 244.20 25.40 2699 4 DR-12 HCO3•Cl—Na 8.39 292.95 21.09 9.28 187.18 109.50 437.76 29.17 862 DR-13 HCO3—Na 8.38 265.94 6.35 1.61 123.47 125.00 358.92 30.47 725 DR-24 HCO3—Na 8.10 194.25 11.02 5.47 76.57 72.53 350.25 975 DR-25 HCO3—Na 7.90 201.72 12.42 7.53 87.21 84.05 353.92 770 DR-29 Cl—Na 7.60 915.50 109.38 6.79 1072.20 186.84 129.42 25.69 1293 5 DR-42 HCO3•SO4—Na 8.24 208.91 15.87 9.75 47.22 167.14 369.29 24.10 652 DR-44 Cl•SO4—Na 7.56 267.42 83.61 11.70 305.05 260.08 160.79 68.51 1061 DR-45 Cl—Na 7.61 1160.30 109.50 32.30 1519.80 556.28 233.58 30.49 3518 DR-46 Cl•SO4—Na 7.50 872.02 144.90 6.52 1123.20 591.30 58.64 59.30 2773 DR-49 Cl•SO4—Na 7.95 937.00 119.00 4.63 1274.60 466.23 56.26 44.62 2864 DR-50 Cl•SO4—Na 7.92 1069.70 105.10 3.58 1288.20 664.16 36.67 85.15 3216 DR-51 Cl•SO4—Na 7.86 790.30 102.90 11.20 961.03 472.09 39.24 2360 DR-52 Cl•SO4—Na 7.90 1126.04 91.58 16.10 1329.38 628.71 215.40 35.10 3440 6 DR-54 HCO3—Na•Ca 6.32 888.57 411.42 109.47 39.35 627.75 2716 74.75 4857 −74.8 −10.30 DR-55 HCO3—Na•Ca 6.89 793.20 486.20 147.40 586.40 598.50 2008 67.07 4699 7 DR-01 Cl—Na 7.54 1150.80 86.56 3.17 1674.30 299.69 137.48 29.33 3306 −71.43 −9.67 DR-02 Cl—Na 7.72 957.98 53.77 1.61 1301.90 259.74 131.19 31.36 2665 −71.97 −9.85 DR-03 Cl—Na 7.93 578.81 20.18 1.61 681.67 207.14 198.07 28.44 1612 −73.38 −10.18 DR-04 HCO3—Na 7.44 336.00 7.06 12.99 58.32 157.50 695.93 28.03 942 −77.77 −10.56 DR-05 Cl—Na 8.36 1605.88 89.53 3.98 2150.40 623.04 38.75 17.76 4507 DR-06 Cl—Na 7.42 1763.31 158.59 5.30 2814.60 297.65 76.21 30.16 5104 DR-07 Cl—Na 7.70 1819.60 242.30 10.70 2638.90 792.01 68.34 33.80 5608 DR-08 SO4•Cl—Na 7.90 978.09 47.70 4.74 835.56 959.64 111.67 32.50 2965 DR-09 Cl—Na 7.90 943.22 51.30 8.51 1319.45 274.25 124.48 22.10 2741 DR-10 Cl—Na 8.20 542.19 14.03 2.43 613.64 246.39 166.58 31.20 1612 DR-11 Cl•SO4—Na 7.93 1098.70 96.60 2.90 1395.40 609.50 100.10 3257 8 DR-33 SO4•HCO3—Ca•Na 7.78 45.93 59.40 7.34 42.19 144.95 86.09 DR-34 HCO3•SO4—Ca 11.22 117.13 22.75 19.78 118.39 314.56 462 DR-35 Cl•HCO3—Na 996.50 11.26 3.17 956.90 235.15 682.51 2556 DR-36 HCO3•SO4—Na 447.83 5.61 3.28 44.92 266.47 706.25 1157 DR-37 HCO3•Cl—Na 904.00 5.01 8.20 726.16 50.38 874.29 2178 DR-38 HCO3•SO4—Na 335.00 58.10 47.33 55.59 494.85 636.32 1332 DR-39 HCO3•SO4—Ca 11.78 120.22 21.79 19.64 123.63 317.85 465 DR-40 HCO3•SO4—Ca•Na 7.50 49.56 80.44 27.19 47.61 134.10 234.26 DR-41 HCO3—Na 8.02 136.57 46.33 19.50 17.58 24.50 540.55 DR-53 HCO3—Ca•Na 6.30 246.80 379.00 64.20 79.00 439.00 1310 47.00 2650 表 2 研究区地热水和浅层地下水特征系数
Table 2. The characteristic coefficient of geothermal water and shallow groundwater in the study area
特征系数 地热水 浅层地下水 1区 2区 3区 4区 5区 6区 7区 8区 Ⅰ区 Ⅱ区 Ⅲ区 脱硫系数 92 53 67 54 66 628 42 301 264 130 96 盐化系数 8.18 9.77 4.55 3.27 24.94 0.26 30.05 0.57 0.15 0.29 0.30 表 3 地热温标法估算的部分热储温度
Table 3. Partial thermal reservoir temperature estimated by geothermometer
井点 出水
温度/°C估算热储温度/°C 石英 玉髓 Na-K K-Mg DR-01 54 78.48 133.03 69.16 65.96 DR-05 52 59.04 107.31 70.39 71.78 DR-09 50 67.24 118.11 79.44 56.67 DR-10 43 81.03 136.44 72.54 54.39 DR-22 70 108.89 174.17 132.36 74.03 DR-30 52 73.60 126.54 104.06 63.25 DR-42 40 70.60 122.56 95.85 33.29 DR-48 47 79.13 133.90 75.33 49.10 DR-49 63 96.57 157.38 122.53 86.47 DR-52 54 86.00 143.11 90.00 59.28 DR-53 46 98.95 160.60 281.44 74.76 DR-54 118 121.56 191.63 707.12 147.90 DR-55 103 116.03 183.99 683.23 138.04 表 4 研究区地热水循环深度
Table 4. The circulation depth of geothermal water in the study area
分区 井点 井深
/m地热流体
温度/°C出水
温度/°C地温梯度
/(°C·hm−1)循环
深度/m1 DR-43 1127 43.1 40 2.20 1268 DR-48 1270 49.1 47 2.50 1354 2 DR-22 1300 74.0 70 4.24 1394 DR-32 1430 64.1 55 2.79 1756 3 DR-28 1200 52.3 49 2.82 1317 DR-30 1400 63.2 52 2.63 1826 4 DR-12 1000 43.1 40 2.48 1125 DR-13 1400 55.1 52 2.63 1518 5 DR-45 1401 55.5 40 1.76 2282 DR-52 1378 59.2 54 2.82 1562 6 DR-54 3276 121.5 118 3.14 3387 DR-55 3318 116.0 103 2.65 3809 7 DR-01 1600 65.9 54 2.42 2091 DR-05 1504 71.7 52 2.45 2309 8 DR-37 1530 76.25 57 2.77 2234 DR-53 2302 74.76 46 1.33 4468 -
[1] 江娃利,聂宗笙. 太行山山前断裂带活动特征及地震危险性讨论[J]. 华北地震科学,1984,2(3):21 − 27. [JIANG Wali,NIE Zongsheng. Discussion on activity characteristics and seismic risk of Taihang Mountain piedmont fault zone[J]. North China Earthquake Sciences,1984,2(3):21 − 27. (in Chinese)]
JIANG Wali, NIE Zongsheng. Discussion on activity characteristics and seismic risk of Taihang Mountain piedmont fault zone[J]. North China Earthquake Sciences, 1984, 2(3): 21 − 27. (in Chinese)
[2] 徐杰,高战武,宋长青,等. 太行山山前断裂带的构造特征[J]. 地震地质,2000,22(2):111 − 122. [XU Jie,GAO Zhanwu,SONG Changqing,et al. The structural characters of the piedmont fault zone of Taihang Mountain[J]. Seismology and Geology,2000,22(2):111 − 122. (in Chinese with English abstract)]
XU Jie, GAO Zhanwu, SONG Changqing, et al. The structural characters of the piedmont fault zone of Taihang Mountain[J]. Seismology and Geology, 2000, 22(2): 111 − 122. (in Chinese with English abstract)
[3] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):448 − 459. [WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):448 − 459. (in Chinese with English abstract)]
WANG Guiling, ZHANG Wei, LIANG Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 448 − 459. (in Chinese with English abstract)
[4] 戴骜鹏,刘明军,贺为民,等. 太行山东麓汤西断裂南段活动特征分析[J]. 大地测量与地球动力学,2020,40(6):571 − 576. [DAI Aopeng,LIU Mingjun,HE Weimin,et al. Analysis on the activity characteristics of the southern segment of tangxi fault at the eastern foot of Taihang Mountain[J]. Journal of Geodesy and Geodynamics,2020,40(6):571 − 576. (in Chinese with English abstract)]
DAI Aopeng, LIU Mingjun, HE Weimin, et al. Analysis on the activity characteristics of the southern segment of tangxi fault at the eastern foot of Taihang Mountain[J]. Journal of Geodesy and Geodynamics, 2020, 40(6): 571 − 576. (in Chinese with English abstract)
[5] 张伟,籍增贤,谢明宏. 太行山前徐水断裂深部电性特征及地热赋存条件分析[J]. 矿产勘查,2021,12(5):1192 − 1198. [ZHANG Wei,JI Zengxian,XIE Minghong. Electrical characteristics and geothermal occurrence conditions of deep part of Xushui fault in front of Taihang Mountain[J]. Mineral Exploration,2021,12(5):1192 − 1198. (in Chinese with English abstract)]
ZHANG Wei, JI Zengxian, XIE Minghong. Electrical characteristics and geothermal occurrence conditions of deep part of Xushui fault in front of Taihang Mountain[J]. Mineral Exploration, 2021, 12(5): 1192 − 1198. (in Chinese with English abstract)
[6] 刘保金,何宏林,石金虎,等. 太行山东缘汤阴地堑地壳结构和活动断裂探测[J]. 地球物理学报,2012,55(10):3266 − 3276. [LIU Baojin,HE Honglin,SHI Jinhu,et al. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang Mountain[J]. Chinese Journal of Geophysics,2012,55(10):3266 − 3276. (in Chinese with English abstract)]
LIU Baojin, HE Honglin, SHI Jinhu, et al. Crustal structure and active faults of the Tangyin graben in the eastern margin of Taihang Mountain[J]. Chinese Journal of Geophysics, 2012, 55(10): 3266 − 3276. (in Chinese with English abstract)
[7] 王凯. 基于综合地球物理探测的雄安新区地热地质结构及深部热源机制研究[D]. 长春:吉林大学,2022. [WANG Kai. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong’an new area based on comprehensive geophysical exploration[D]. Changchun:Jilin University,2022. (in Chinese with English abstract)]
WANG Kai. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong’an new area based on comprehensive geophysical exploration[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract)
[8] 朱喜,王贵玲,马峰,等. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学,2021,46(7):2594 − 2608. [ZHU Xi,WANG Guiling,MA Feng,et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong’an new area and its indicating significance[J]. Earth Science,2021,46(7):2594 − 2608. (in Chinese with English abstract)]
ZHU Xi, WANG Guiling, MA Feng, et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong’an new area and its indicating significance[J]. Earth Science, 2021, 46(7): 2594 − 2608. (in Chinese with English abstract)
[9] 汪洋,张旭虎,蒲丛林,等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报,2022,41(9):1698 − 1706. [WANG Yang,ZHANG Xuhu,PU Conglin,et al. The hydrochemical characteristics of geothermal water and its formation in the south Langfang, Hebei Province[J]. Geological Bulletin of China,2022,41(9):1698 − 1706. (in Chinese with English abstract)]
WANG Yang, ZHANG Xuhu, PU Conglin, et al. The hydrochemical characteristics of geothermal water and its formation in the south Langfang, Hebei Province[J]. Geological Bulletin of China, 2022, 41(9): 1698 − 1706. (in Chinese with English abstract)
[10] 尹政, 柳永刚, 张旭儒, 等. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质,2023,50(1):168 − 178. [YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology,2023,50(1):168 − 178. (in Chinese with English abstract)]
YIN Zheng, LIU Yonggang, ZHANG Xuru, et al. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168 − 178. (in Chinese with English abstract)
[11] 邓俊祖,蔺文静,邢林啸,等. 冀中坳陷北部碳酸盐岩热储水化学特征及成因分析[J]. 地下水,2022,44(3):1 − 4. [DENG Junzu,LIN Wenjing,XING Linxiao,et al. Chemical characteristics and genetic analysis of geothermal water in carbonate reservoir in the northern Jizhong Depression[J]. Ground Water,2022,44(3):1 − 4. (in Chinese with English abstract)]
DENG Junzu, LIN Wenjing, XING Linxiao, et al. Chemical characteristics and genetic analysis of geothermal water in carbonate reservoir in the northern Jizhong Depression[J]. Ground Water, 2022, 44(3): 1 − 4. (in Chinese with English abstract)
[12] 王凯,张杰,白大为,等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质,2021,48(5):1453 − 1468. [WANG Kai,ZHANG Jie,BAI Dawei,et al. Geothermal-geological model of Xiong’an new area:Evidence from geophysics[J]. Geology in China,2021,48(5):1453 − 1468. (in Chinese with English abstract)]
WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiong’an new area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453 − 1468. (in Chinese with English abstract)
[13] 耿莉萍. 中国地热资源的地理分布与勘探[J]. 地质与勘探,1998,34(1):50 − 54. [GENG Liping. Geographic distribution and application of geothermal energy in China[J]. Geology and Prospecting,1998,34(1):50 − 54. (in Chinese with English abstract)]
GENG Liping. Geographic distribution and application of geothermal energy in China[J]. Geology and Prospecting, 1998, 34(1): 50 − 54. (in Chinese with English abstract)
[14] 徐世光,郭远生. 地热学基础[M]. 北京:科学出版社,2009. [XU Shiguang,GUO Yuansheng. Geothermal foundation[M]. Beijing:Science Press,2009. (in Chinese with English abstract)]
XU Shiguang, GUO Yuansheng. Geothermal foundation[M]. Beijing: Science Press, 2009. (in Chinese with English abstract)
[15] 熊超凡. 河南省太行山东麓断裂带地热成因模式研究[D]. 郑州:郑州大学,2022. [XIONG Chaofan. Geothermal genetic model of the eastern Taihang Mountain fault zone in Henan Province[D]. Zhengzhou:Zhengzhou University,2022. (in Chinese with English abstract)]
XIONG Chaofan. Geothermal genetic model of the eastern Taihang Mountain fault zone in Henan Province[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese with English abstract)
[16] 张建斌. 豫北平原地层富水性及主要热水储层分析[J]. 地下水,2004,26(3):179 − 180. [ZHANG Jianbin. Analysis of formation water abundance and main hot water reservoirs in northern Henan plain[J]. Ground Water,2004,26(3):179 − 180. (in Chinese)]
ZHANG Jianbin. Analysis of formation water abundance and main hot water reservoirs in northern Henan plain[J]. Ground Water, 2004, 26(3): 179 − 180. (in Chinese)
[17] 柳鉴容,宋献方,袁国富,等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报,2009,54(22):3521 − 3531. [LIU Jianrong,SONG Xianfang,YUAN Guofu,et al. Characteristics of atmospheric precipitation δ18O and the source of water vapor in monsoon region of Eastern China[J]. Chinese Science Bulletin,2009,54(22):3521 − 3531. (in Chinese)] doi: 10.1360/csb2009-54-22-3521
LIU Jianrong, SONG Xianfang, YUAN Guofu, et al. Characteristics of atmospheric precipitation δ18O and the source of water vapor in monsoon region of Eastern China[J]. Chinese Science Bulletin, 2009, 54(22): 3521 − 3531. (in Chinese) doi: 10.1360/csb2009-54-22-3521
[18] 张七道,杨润柏,刘振南,等. 滇西遮放地区水文地球化学及同位素特征[J]. 成都理工大学学报(自然科学版),2020,47(5):612 − 624. [ZHANG Qidao,YANG Runbai,LIU Zhennan,et al. Characteristics of hydrogeochemistry and isotope in the Zhefang area of western Yunnan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(5):612 − 624. (in Chinese with English abstract)]
ZHANG Qidao, YANG Runbai, LIU Zhennan, et al. Characteristics of hydrogeochemistry and isotope in the Zhefang area of western Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(5): 612 − 624. (in Chinese with English abstract)
[19] 刘春雷,李亚松,洪炳义,等. 福建盐田海水补给型地热系统地球化学特征及其成因[J]. 水文地质工程地质,2023,50(1):158 − 167. [LIU Chunlei,LI Yasong,HONG Bingyi,et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology,2023,50(1):158 − 167. (in Chinese with English abstract)]
LIU Chunlei, LI Yasong, HONG Bingyi, et al. Geochemical characteristics and formation mechanisms of the seawater-recharged geothermal systems in Yantian of Fujian, China[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 158 − 167. (in Chinese with English abstract)
[20] 温煜华,王乃昂,朱锡芬,等. 天水及其南北地区地热水水化学特征及起源[J]. 地理科学,2011,31(6):668 − 673. [WEN Yuhua,WANG Naiang,ZHU Xifen,et al. Hydrochemistry of geothermal water in Tianshui and its northern-southern area[J]. Scientia Geographica Sinica,2011,31(6):668 − 673. (in Chinese with English abstract)]
WEN Yuhua, WANG Naiang, ZHU Xifen, et al. Hydrochemistry of geothermal water in Tianshui and its northern-southern area[J]. Scientia Geographica Sinica, 2011, 31(6): 668 − 673. (in Chinese with English abstract)
[21] 宋小庆,彭钦,段启杉,等. 黔东北地区地热水化学特征及起源[J]. 地球科学,2019,44(9):2874 − 2886. [SONG Xiaoqing,PENG Qin,DUAN Qishan,et al. Hydrochemistry characteristics and origin of geothermal water in northeastern Guizhou[J]. Earth Science,2019,44(9):2874 − 2886. (in Chinese with English abstract)]
SONG Xiaoqing, PENG Qin, DUAN Qishan, et al. Hydrochemistry characteristics and origin of geothermal water in northeastern Guizhou[J]. Earth Science, 2019, 44(9): 2874 − 2886. (in Chinese with English abstract)
[22] 李泽威,袁飞,李明龙,等. 水化学特征在恩施盆地地热资源调查中的指示意义[J]. 地质科技通报,2023,42(4):83 − 94. [LI Zewei,YUAN Fei,LI Minglong,et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology,2023,42(4):83 − 94. (in Chinese with English abstract)]
LI Zewei, YUAN Fei, LI Minglong, et al. Indicative significance of hydrochemical characteristics in geothermal resource investigations in the Enshi Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 83 − 94. (in Chinese with English abstract)
[23] 余琴,杨平恒,王长江,等. 重庆市统景温泉水化学特征及混合作用[J]. 中国岩溶,2017,36(1):59 − 66. [YU Qin,YANG Pingheng,WANG Changjiang,et al. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. Carsologica Sinica,2017,36(1):59 − 66. (in Chinese with English abstract)]
YU Qin, YANG Pingheng, WANG Changjiang, et al. Hydrochemical characteristics and mixing effect in Tongjing hot springs of Chongqing[J]. Carsologica Sinica, 2017, 36(1): 59 − 66. (in Chinese with English abstract)
[24] DÍAZ E G,ARIAS O M M. Structural assessment and geochemistry of thermal waters at the Cerro Machin Volcano (Colombia):An approach to understanding the geothermal system[J]. Journal of Volcanology and Geothermal Research,2020,400:106910. doi: 10.1016/j.jvolgeores.2020.106910
[25] 江露露,隋海波,康凤新,等. 鲁中隆起北缘地热区岩溶热储水化学特征及形成机理[J/OL]. 中国岩溶,2023:1 − 23. [JIANG Lulu,SUI Haibo,KANG Fengxin,et al. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir in the northern edge of the Luzhong Uplift[J/OL]. CARSOLOGICA SINICA,2023:1 − 23. (in Chinese with English abstract)]
JIANG Lulu, SUI Haibo, KANG Fengxin, et al. Hydrogeochemical characteristics and formation mechanism of the karst thermal reservoir in the northern edge of the Luzhong Uplift[J/OL]. CARSOLOGICA SINICA, 2023: 1 − 23. (in Chinese with English abstract)
[26] 邓晓颖,杨国平,田秋菊,等. 河南省鹤壁市新区地热流体特征及成因分析[J]. 水文地质工程地质,2005,32(2):111 − 114. [DENG Xiaoying,YANG Guoping,TIAN Qiuju,et al. Features and origin of geothermal fluid in the new district of Hebi,Henan[J]. Hydrogeology and Engineering Geology,2005,32(2):111 − 114. (in Chinese with English abstract)]
DENG Xiaoying, YANG Guoping, TIAN Qiuju, et al. Features and origin of geothermal fluid in the new district of Hebi, Henan[J]. Hydrogeology and Engineering Geology, 2005, 32(2): 111 − 114. (in Chinese with English abstract)
[27] 李洁刚,邓晓颖,王利,等. 河南省鹤壁市地热地质特征及开发前景[J]. 华北水利水电学院学报,2005,26(2):58 − 61. [LI Jiegang,DENG Xiaoying,WANG Li,et al. Geological features and development potential of geothermal resources in Hebi city of Henan Province[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power,2005,26(2):58 − 61. (in Chinese with English abstract)]
LI Jiegang, DENG Xiaoying, WANG Li, et al. Geological features and development potential of geothermal resources in Hebi city of Henan Province[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2005, 26(2): 58 − 61. (in Chinese with English abstract)
[28] MAHWA J,LI Dajiang,PING Jianhua,et al. Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift,Southeast of Taihang Mountain in China[J]. Journal of Mountain Science,2022,19(8):2241 − 2259. doi: 10.1007/s11629-022-7329-2
[29] MAHWA J,PING Jianhua,LENG Wei,et al. Tectonics and hydrogeochemical features of geothermal waters in Tangyin Rift SE Taihang Mountain[J]. Geothermics,2023,109:102657. doi: 10.1016/j.geothermics.2023.102657
[30] 宁艺武. 内黄凸起地热特征及其成因机制研究[D]. 郑州:郑州大学,2022. [NING Yiwu. Geothermal characteristics and genesis mechanism of Neihuang uplift[D]. Zhengzhou:Zhengzhou University,2022. (in Chinese with English abstract)]
NING Yiwu. Geothermal characteristics and genesis mechanism of Neihuang uplift[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese with English abstract)
[31] 毛珂. 豫北内黄凸起地温场及地热开发中地质因素影响研究[D]. 北京:中国地质大学(北京),2021. [MAO Ke. Study on the geothermal field and the influence of geological gactors on geothermal development in Neihuang uplift,northern Henan Province[D]. Beijing:China University of Geosciences,2021. (in Chinese with English abstract)]
MAO Ke. Study on the geothermal field and the influence of geological gactors on geothermal development in Neihuang uplift, northern Henan Province[D]. Beijing: China University of Geosciences, 2021. (in Chinese with English abstract)
[32] 秦勇,金法礼,权彪,等. 焦作——济源地区晚中生代古地热场特征及成因[J]. 煤田地质与勘探,1993,21(3):16 − 23. [QIN Yong,JIN Fali,QUAN Biao,et al. Characteristics and mechanism of the late Mesozoic palaeogeothermal field in Jiaozuo——Jiyuan,Henan,China[J]. Coal Geology & Exploration,1993,21(3):16 − 23. (in Chinese)]
QIN Yong, JIN Fali, QUAN Biao, et al. Characteristics and mechanism of the late Mesozoic palaeogeothermal field in Jiaozuo——Jiyuan, Henan, China[J]. Coal Geology & Exploration, 1993, 21(3): 16 − 23. (in Chinese)
[33] 黄光寿,郭丽丽,黄凯. 河南省沉积盆地区五大构造单元地热地质特征[J]. 地质与资源,2020,29(2):172 − 179. [HUANG Guangshou,GUO Lili,HUANG Kai. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources,2020,29(2):172 − 179. (in Chinese with English abstract)]
HUANG Guangshou, GUO Lili, HUANG Kai. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources, 2020, 29(2): 172 − 179. (in Chinese with English abstract)
[34] 梁志刚,潘生秦. 济源凹陷油气成藏特征及勘探远景[J]. 地质论评,1996,42(增刊1):222 − 228. [LIANG Zhigang,PAN Shengqin. The characteristics of oil and gas reservoir development and exploration prospects in the Jiyuan sag[J]. Geological Review,1996,42(Sup 1):222 − 228. (in Chinese with English abstract)]
LIANG Zhigang, PAN Shengqin. The characteristics of oil and gas reservoir development and exploration prospects in the Jiyuan sag[J]. Geological Review, 1996, 42(Sup 1): 222 − 228. (in Chinese with English abstract)
[35] 柯柏林. 北京市平原区北部孙河断裂的地热地质特征[J]. 现代地质,2009,23(1):43 − 48. [KE Bailin. Geothermal and geological features of sunhe fault in the northern part of Beijing plain[J]. Geoscience,2009,23(1):43 − 48. (in Chinese with English abstract)]
KE Bailin. Geothermal and geological features of sunhe fault in the northern part of Beijing plain[J]. Geoscience, 2009, 23(1): 43 − 48. (in Chinese with English abstract)
[36] 邢一飞,王慧群,李捷,等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质,2022,49(6):1711 − 1722. [XING Yifei,WANG Huiqun,LI Jie,et al. Chemical field of geothermal water in Xiong’an New Area and analysis of influencing factors[J]. Geology in China,2022,49(6):1711 − 1722. (in Chinese with English abstract)]
XING Yifei, WANG Huiqun, LI Jie, et al. Chemical field of geothermal water in Xiong’an New Area and analysis of influencing factors[J]. Geology in China, 2022, 49(6): 1711 − 1722. (in Chinese with English abstract)
[37] 张保建. 鲁西北地区地下热水的水文地球化学特征及形成条件研究[D]. 北京:中国地质大学(北京),2011. [ZHANG Baojian. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing:China University of Geosciences,2011. (in Chinese with English abstract)]
ZHANG Baojian. Hydrogeochemical characteristics and formation conditions of the geothermal water in northwestern Shandong Province[D]. Beijing: China University of Geosciences, 2011. (in Chinese with English abstract)
[38] 孙英,周金龙,魏兴,等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学,2019,38(11):2601 − 2609. [SUN Ying,ZHOU Jinlong,WEI Xing,et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry,2019,38(11):2601 − 2609. (in Chinese with English abstract)]
SUN Ying, ZHOU Jinlong, WEI Xing, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601 − 2609. (in Chinese with English abstract)
[39] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702 − 1703. doi: 10.1126/science.133.3465.1702
[40] HUANG Xiangui,PING Jianhua,LENG Wei,et al. A study on groundwater recharge in the Anyanghe River alluvial fan,North China Plain,based on hydrochemistry,stable isotopes and tritium[J]. Hydrogeology Journal,2021,29(6):2149 − 2170. doi: 10.1007/s10040-021-02369-1
[41] 戴蔓,蒋小伟,罗银飞,等. 地热水氢氧同位素控制因素识别与定量计算:以青海贵德盆地为例[J]. 地学前缘,2021,28(1):420 − 427. [DAI Wan,JIANG Xiaowei,LUO Yinfei,et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water:An example from the Guide Basin,Qinghai Province[J]. Earth Science Frontiers,2021,28(1):420 − 427. (in Chinese with English abstract)]
DAI Wan, JIANG Xiaowei, LUO Yinfei, et al. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province[J]. Earth Science Frontiers, 2021, 28(1): 420 − 427. (in Chinese with English abstract)
[42] CLARK I D,FRITZ P. Environmental Isotopes in Hydrogeology[M]. Boca Raton Press:CRC,2013.
[43] 袁建飞,邓国仕,徐芬,等. 川西南喜德热田地下水水文地球化学特征[J]. 现代地质,2017,31(1):200 − 208. [YUAN Jianfei,DENG Guoshi,XU Fen,et al. Hydrogeochemical characteristics of groundwater in the Xide geothermal field,southwest Sichuan,China[J]. Geoscience,2017,31(1):200 − 208. (in Chinese with English abstract)]
YUAN Jianfei, DENG Guoshi, XU Fen, et al. Hydrogeochemical characteristics of groundwater in the Xide geothermal field, southwest Sichuan, China[J]. Geoscience, 2017, 31(1): 200 − 208. (in Chinese with English abstract)
[44] 周训,金晓媚,梁四海,等. 地下水科学专论[M]. 北京:地质出版社,2010. [ZHOU Xun,JIN Xiaomei,LIANG Sihai,et al. Monograph on groundwater science[M]. Beijing:Geological Publishing House,2010. (in Chinese with English abstract)]
ZHOU Xun, JIN Xiaomei, LIANG Sihai, et al. Monograph on groundwater science[M]. Beijing: Geological Publishing House, 2010. (in Chinese with English abstract)
[45] 张敏. 同位素技术刻画安阳河流域地表水与地下水相互作用[D]. 郑州:郑州大学,2019. [ZHANG Min. Charaterzing surfater water-groundwater interactions using isotopic techniques in the Anyang River watershed[D]. Zhengzhou:Zhengzhou University,2019. (in Chinese with English abstract)]
ZHANG Min. Charaterzing surfater water-groundwater interactions using isotopic techniques in the Anyang River watershed[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese with English abstract)
[46] GIGGENBACH W F. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749 − 2765. doi: 10.1016/0016-7037(88)90143-3
[47] 能源行业地热能专业标准化技术委员会. 地热地球化学勘查规范:NB/T 10699—2021[S]. 北京,2022. [Geothermal Energy Standardization Technical Committee of Energy Industry. Geothermal geochemical exploration specification:NB/T 10699—2021[S]. Beijing,2022. (in Chinese)]
Geothermal Energy Standardization Technical Committee of Energy Industry. Geothermal geochemical exploration specification: NB/T 10699—2021[S]. Beijing, 2022. (in Chinese)
[48] 韦祖宁. 民乐盆地地热水特征及成因[D]. 兰州:兰州大学,2021. [WEI Zuning. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou:Lanzhou University,2021. (in Chinese with English abstract)]
WEI Zuning. Characteristics and genesis of geothermal water in the Minle Basin[D]. Lanzhou: Lanzhou University, 2021. (in Chinese with English abstract)
[49] 王治祥,蒋晶,邹胜章,等. 渝东南深部地热温度解析[J]. 中国岩溶,2019,38(5):663 − 669. [WANG Zhixiang,JIANG Jing,ZOU Shengzhang,et al. Analysis of deep geothermal temperature in Southeast Chongqing[J]. Carsologica Sinica,2019,38(5):663 − 669. (in Chinese with English abstract)]
WANG Zhixiang, JIANG Jing, ZOU Shengzhang, et al. Analysis of deep geothermal temperature in Southeast Chongqing[J]. Carsologica Sinica, 2019, 38(5): 663 − 669. (in Chinese with English abstract)
[50] FOURNIER R O,TRUESDELL A H. An empirical Na–K–Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta,1973,37(5):1255 − 1275. doi: 10.1016/0016-7037(73)90060-4
[51] 朱日祥,徐义刚,朱光,等. 华北克拉通破坏[J]. 中国科学:地球科学,2012,42(8):1135 − 1159. [ZHU Rixiang,XU Yigang,ZHU Guang,et al. Destruction of North China craton[J]. Scientia Sinica Terrae,2012,42(8):1135 − 1159. (in Chinese with English abstract)] doi: 10.1360/zd-2012-42-8-1135
ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of North China craton[J]. Scientia Sinica Terrae, 2012, 42(8): 1135 − 1159. (in Chinese with English abstract) doi: 10.1360/zd-2012-42-8-1135
-