中国地质环境监测院
中国地质灾害防治工程行业协会
主办

西藏波密茶隆隆巴曲高位地质灾害类型及发育特征

张田田, 殷跃平, 李滨, 贺凯, 王猛, 赵超英, 刘晓杰. 西藏波密茶隆隆巴曲高位地质灾害类型及发育特征[J]. 中国地质灾害与防治学报, 2021, 32(3): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-02
引用本文: 张田田, 殷跃平, 李滨, 贺凯, 王猛, 赵超英, 刘晓杰. 西藏波密茶隆隆巴曲高位地质灾害类型及发育特征[J]. 中国地质灾害与防治学报, 2021, 32(3): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-02
ZHANG Tiantian, YIN Yueping, LI Bin, HE Kai, WANG Meng, ZHAO Chaoying, LIU Xiaojie. Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-02
Citation: ZHANG Tiantian, YIN Yueping, LI Bin, HE Kai, WANG Meng, ZHAO Chaoying, LIU Xiaojie. Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 9-16. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-02

西藏波密茶隆隆巴曲高位地质灾害类型及发育特征

  • 基金项目: 中国地质调查局地质调查项目(DD20211540)
详细信息
    作者简介: 张田田(1995-),男,博士研究生,主要从事地质灾害防治研究工作。E-mail:1297385717@qq.com
    通讯作者: 殷跃平(1960-),男,研究员,博士生导师,主要从事地质灾害防治技术研究工作。E-mail:yyueping@mail.cgs.gov.cn
  • 中图分类号: P694

Types and development characteristics of high geological disasters in Chalonglongbaqu gully, Bomi , Tibet

More Information
  • 茶隆隆巴曲位于帕隆藏布右岸,陡变地形孕育了大量高位地质灾害,威胁下游线性工程。采用多源、多期次高分辨率遥感数据,建立高位地质灾害遥感解译标志,厘定了研究区高位地质灾害类型,并详细阐述了其发育特征。结果表明,研究区主要地质灾害类型包括高位冰崩、高位崩塌、高位滑坡。其中高位冰崩发育3处,均位于沟谷上游南坡海拔5000 m斜坡,面积在15×104 m2以上。高位崩塌体发育19处,多分布于沟谷中游及上游主沟两侧高陡岸坡,北坡多于南坡。高位滑坡发育2处,位于沟谷上游,滑体以冰碛物为主。上述高位地质灾害在强震或强降雨作用下,极易发生失稳、堵沟,且堵沟后极易诱发洪水、泥石流等次生灾害链,对下游帕隆藏布造成堵江风险。

  • 加载中
  • 图 1  研究区三维遥感地形(左)及地层岩性分布图(右)

    Figure 1. 

    图 2  茶隆隆巴曲I-I′工程地质剖面示意图

    Figure 2. 

    图 3  研究区高位地质灾害分布图

    Figure 3. 

    图 4  BC01冰崩堆积体多期光学遥感解译

    Figure 4. 

    图 5  BC02冰崩体多期遥感影像

    Figure 5. 

    图 6  BC03冰崩体多期遥感影像

    Figure 6. 

    图 7  冰崩区InSAR形变速率图

    Figure 7. 

    图 8  B002、B003、B004高位崩塌危岩体影像图

    Figure 8. 

    图 9  B009、B011、B016高位崩塌危岩体影像图

    Figure 9. 

    表 1  研究区光学遥感数据一览表

    Table 1.  Summary of optical remote sensing data in the study area

    序号日期数据来源分辨率备注
    12013-10-11资源三号卫星全色2.1 m,多光谱5.8 m
    22015-07-25高分一号全色2 m,多光谱8 m
    32016-12-22资源三号卫星全色2.1 m,多光谱5.8 m
    42019-11-07高分一号全色2 m,多光谱8 m
    5Google地球2.0 m融合数据
    62020-08-18无人机航空
    正射影像
    0.5 m沟道中下部
    72020-08-18无人机航空
    倾斜影像
    0.5 m沟道中下部
    下载: 导出CSV

    表 2  高位冰崩发育特征

    Table 2.  Development characteristics of high ice avalanche

    编号位置前缘高程/m后缘高程/m前后缘高差/m落差/m面积/m2
    BC01南坡3692520815162983719633
    BC02南坡449049734832748204033
    BC03南坡447148784072653185347
    下载: 导出CSV

    表 3  研究区典型高位崩塌发育特征

    Table 3.  Development characteristics of typical high-level avalanches in the study area

    编号位置崩源区面积/m2崩塌堆积区面积/m2总体积/m3落差/m
    B002南坡88912630291.50×1061000
    B003南坡558945649810.8×1041400
    B004南坡122602564982.15×1061500
    B009北坡284287834144.04×1061000
    B011北坡1589463971915.14×106880
    B016北坡53017173520.35×1061100
    下载: 导出CSV
  • [1]

    殷跃平. 西藏波密易贡高速巨型滑坡概况[J]. 中国地质灾害与防治学报,2000,11(2):1. [YIN Yueping. Overview of giant landslides on the Bomi-Yigong Expressway in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2000,11(2):1. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2000.02.001

    [2]

    殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Research on the characteristics and disaster mitigation of giant landslides on the Bomi-Yigong Expressway in Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2000.04.003

    [3]

    鲁安新, 邓晓峰, 赵尚学, 等. 2005 年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土,2006,28(6):956 − 960. [LU Anxin, DENG Xiaofeng, ZHAO Shangxue, et al. Analysis of the causes of the debris flow outbreak in the Guxiang Gully, Bomi, Tibet in 2005[J]. Glaciology and Geocryology,2006,28(6):956 − 960. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0240.2006.06.023

    [4]

    陶明刚. Landsat-TM遥感影像岸线变迁解译研究—以九龙江河口地区为例[J]. 水文地质工程地质,2006,33(1):107 − 110. [TAO Minggang. Research on interpretation of shoreline changes of Landsat-TM remote sensing image: Taking Jiulong River Estuary as an example[J]. Hydrogeology & Engineering Geology,2006,33(1):107 − 110. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.01.028

    [5]

    薛东剑, 张东辉, 何政伟. 多源遥感影像融合技术在地质灾害调查中的应用[J]. 遥感技术与应用,2011,26(5):664 − 669. [XUE Dongjian, ZHANG Donghui, HE Zhengwei. Application of multi-source remote sensing image fusion technology in geological disaster investigation[J]. Remote Sensing Technology and Application,2011,26(5):664 − 669. (in Chinese with English abstract) doi: 10.11873/j.issn.1004-0323.2011.5.664

    [6]

    方成, 孙晓明, 康慧, 等. 遥感技术在曹妃甸海岸带地质环境调查中的应用[J]. 水文地质工程地质,2015,42(3):119 − 127. [FANG Cheng, SUN Xiaoming, KANG Hui, et al. Application of remote sensing technology in the geological environment investigation of Caofeidian coastal zone[J]. Hydrogeology & Engineering Geology,2015,42(3):119 − 127. (in Chinese with English abstract)

    [7]

    LAUKNES T R, PIYUSH S A, DEHLS J F, et al. Detailedrockslidemapping in northern norway with small baseline and persistent scatterer interferometric SAR time series methods[J]. Remote Sensing of Environment,2010,114:2097 − 2109. doi: 10.1016/j.rse.2010.04.015

    [8]

    FRANCESCA B, IVAN C, PAOLO M, et al. Displacement patterns of a landslide affected by human activities: Insightsfromground-based InSAR monitoring[J]. Natural Hazards,2011,59:1377 − 1396. doi: 10.1007/s11069-011-9840-6

    [9]

    HU X, WANG T, PIERSON T C, et al. Detecting seasonal landslide movement within the cascade landslide complex(Washington) using time-series SAR imagery[J]. RemoteSensing of Environment,2016,187:49 − 61.

    [10]

    孙家抦. 遥感原理与应用[M]. 武汉: 武汉大学出版社, 2003.

    SUN Jiabing. Principle and application of remote sensing [M]. Wuhan: Wuhan University Press, 2003. (in Chinese)

    [11]

    刘佳, 赵海军, 马凤山, 等. 基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(4):63 − 70. [LIU Jia, ZHAO Haijun, MA Fengshan, et al. Risk assessment of G109 Lhasa-Naqu Debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63 − 70. (in Chinese with English abstract)

    [12]

    王立朝, 温铭生, 冯振, 等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao, WEN Mingsheng, FENG Zhen, et al. esearches on the baige landslide at Jinshajiang river, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)

    [13]

    杨军杰, 张志, 王旭, 等. 汶川县地震次生山地地质灾害遥感调查[J]. 山地学报,2008,26(6):755 − 760. [YANG Junjie, ZHANG Zhi, WANG Xu, et al. Remote sensing survey of secondary mountain geological disasters in Wenchuan County[J]. Journal of Mountain Research,2008,26(6):755 − 760. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2008.06.017

    [14]

    王猛, 王军, 江煜, 等. 汶川地震地质灾害遥感调查与空间特征分析[J]. 地球信息科学学报,2010,12(4):480 − 486. [WANG Meng, WANG Jun, JIANG Yu, et al. Wenchuan Earthquake Geological Disaster Remote Sensing Investigation and Spatial Feature Analysis[J]. Journal of Geo-Information Science,2010,12(4):480 − 486. (in Chinese with English abstract) doi: 10.3724/SP.J.1047.2010.00480

    [15]

    梁京涛, 成余粮, 王军, 等. 基于无人机遥感技术的汶川震区典型高位泥石流动态监测—以绵竹文家沟泥石流为例[J]. 中国地质灾害与防治学报,2013,24(3):54 − 61. [LIANG Jingtao, CHENG Yuliang, WANG Jun, et al. Dynamic monitoring of typical high-level debris flow in Wenchuan earthquake area based on UAV remote sensing technology: taking Wenjiagou debris flow in Mianzhu as an example[J]. The Chinese Journal of Geological Hazard and Control,2013,24(3):54 − 61. (in Chinese with English abstract)

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1385
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-05-05
修回日期:  2021-05-10
刊出日期:  2021-06-25

目录