中国地质环境监测院
中国地质灾害防治工程行业协会
主办

西藏然乌湖口高位地质灾害变形特征分析

赵志男, 李滨, 高杨, 赵超英, 刘晓杰, 王猛. 西藏然乌湖口高位地质灾害变形特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 25-32. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-04
引用本文: 赵志男, 李滨, 高杨, 赵超英, 刘晓杰, 王猛. 西藏然乌湖口高位地质灾害变形特征分析[J]. 中国地质灾害与防治学报, 2021, 32(3): 25-32. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-04
ZHAO Zhinan, LI Bin, GAO Yang, ZHAO Chaoying, LIU Xiaojie, WANG Meng. Analysis on deformation characteristics of geological hazards in Ranwu Lake Estuary[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 25-32. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-04
Citation: ZHAO Zhinan, LI Bin, GAO Yang, ZHAO Chaoying, LIU Xiaojie, WANG Meng. Analysis on deformation characteristics of geological hazards in Ranwu Lake Estuary[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 25-32. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-04

西藏然乌湖口高位地质灾害变形特征分析

  • 基金项目: 中国地质调查局地质调查项目(DD20211540);西藏自治区自然资源厅项目(藏财采【2020】0546)
详细信息
    作者简介: 赵志男(1997-),男,山东德州人,硕士研究生,主要从事地质灾害研究。E-mail:1184107787@qq.com
    通讯作者: 李 滨(1980-),男,山东滨州人,博士,研究员,主要从事地质灾害研究。E-mail:libin1102@163.com
  • 中图分类号: P642

Analysis on deformation characteristics of geological hazards in Ranwu Lake Estuary

More Information
  • 青藏高原持续隆升使得其周缘地带地质灾害频发,复杂的地质背景,造就了帕隆藏布流域链式灾害发育、堵江致灾风险高的特点。近年来,地处帕隆藏布流域的然乌湖口地质灾害变形强烈,本文通过光学遥感与InSAR监测技术,对然乌湖口82道班沟内进行风险物源识别,解译出研究区共存在高位冰崩、崩塌、冰碛物、崩滑体4种风险物源类型,针对各风险物源的遥感解译数据进行特征分析,综合然乌湖流域内的地质背景,阐述风险物源的致灾因素及成灾模式。结合InSAR监测结果,将然乌湖口右岸斜坡体及上部解译风险物源区划分为82道班、迫隆与哑隆三个高风险区,并依据变形监测结果进行形变特征分析。

  • 加载中
  • 图 1  然乌湖口泥石流沟三维影像图

    Figure 1. 

    图 2  然乌湖口地质灾害遥感解译图

    Figure 2. 

    图 3  然乌湖口主沟剖面图

    Figure 3. 

    图 4  B02高位崩塌影像图

    Figure 4. 

    图 5  B14高位崩塌影像图

    Figure 5. 

    图 6  BQ01冰碛物光学遥感影像

    Figure 6. 

    图 7  BQ01冰碛物前缘滑塌体

    Figure 7. 

    图 8  BQ02冰碛物光学遥感影像

    Figure 8. 

    图 9  安目错冰川2017年5月—2020年8月年平均形变速率图

    Figure 9. 

    图 10  P1至P8点2017年5月—2020年8月时间序列形变

    Figure 10. 

    表 1  82道班流域分区基本信息

    Table 1.  Basic information of 82 road class

    分区名称面积/km2主沟长/m平均纵比降/‰
    形成区9.134 507217.50
    流通区0.491 684377.62
    堆积区0.03652764.61
    下载: 导出CSV

    表 2  帕隆藏布卫星数据信息

    Table 2.  Data information of Palongzangbu satellite

    光学卫星数据源覆盖率/%数据时间云覆盖雪覆盖
    Landsat-81002017-11-20—2020-11-20<1%<5%
    资源一号30.032020-01-14—2020-11-10<1%<5%
    资源三号94.302016-11-10—2020-11-12<1%<5%
    高分一号1002014-11-29—2020-11-14<1%<5%
    高分二号53.472015-09-30—2020-11-15<1%<5%
    高分六号90.512019-03-29—2020-11-20<1%<5%
    高分七号17.312020-04-13—2020-11-11<1%<5%
    TH0117.962019-01-02—2019-01-11<1%<5%
    珠海一号77.992018-12-09—2020-03-31<1%<5%
    下载: 导出CSV

    表 3  然乌湖口地质灾害光学遥感数据

    Table 3.  Optical remote sensing data of geological hazards in Ranwu Lake Estuary

    序号时间数据来源分辨率/m备注
    1早期雅虎影像2.0融合数据
    2近期Google地球1.0融合数据
    32020-10-29无人机影像0.15泥石流中下段
    下载: 导出CSV

    表 4  然乌湖口高位冰崩物源统计表

    Table 4.  Statistics of high-level ice debris sources in Ranwu Lake Estuary

    编号面积/m2前缘
    高程/m
    后缘
    高程/m
    前后缘
    高差/m
    距沟口
    高差/m
    BC01117 185.754 9295 2963671 369
    BC0264 032.7285 0465 1651191 238
    BC0346 066.9554 9955 094991 167
    BC0436 014.7785 1595 2811221 354
    BC0527 004.2825 0355 2512161 324
    BC0655 548.6665 1705 235651 308
    下载: 导出CSV

    表 5  然乌湖口高位崩塌、冰碛物统计表

    Table 5.  Statistics of high level collapses and moraines in Ranwu Lake Estuary

    编号物源类型与分布面积/m2
    B01崩塌堆积/34 007
    崩源区92 675
    B02崩塌堆积/117 392
    崩源区308 142
    B03崩塌堆积/860
    崩源区13 099
    B04崩塌堆积/1 823
    崩源区50 223
    B05崩塌堆积/6 749
    崩源区238 141
    B06崩塌堆积/5 458
    崩源区251 888
    B07崩塌堆积/37 214
    崩源区99 637
    B08崩塌堆积/7 554
    崩源区51 521
    B09崩塌堆积/31 383
    崩源区101 061
    B10崩塌堆积/10 777
    崩源区67 932
    B11崩塌堆积/39 192
    崩源区210 429
    B12崩塌堆积/32 823
    崩源区39 066
    B13崩塌堆积/14 445
    崩源区19 994
    B14崩塌堆积/131 017
    崩源区714 128
    B15崩塌堆积/77 610
    崩源区177 990
    B16崩塌堆积/79 078
    崩源区311 705
    B17崩塌堆积/12 208
    崩源区153 766
    BQ01冰碛物2 416 559
    BQ02冰碛物406 753
    下载: 导出CSV

    表 6  然乌湖口崩滑物源统计表

    Table 6.  Statistics of avalanche source in Ranwu Lake Estuary

    编号面积/m2
    BH011 015
    BH02467
    BH032 052
    BH04352
    BH05596
    BH06839
    BH07378
    BH08507
    BH09731
    BH103 858
    BH11460
    BH121 465
    BH132 001
    下载: 导出CSV
  • [1]

    李吉均, 文世宣, 张青松, 等. 青藏高原隆起的时代、幅度和形式的探讨[J]. 中国科学,1979(6):608 − 616. [LI Jijun, WEN Shixuan, ZHANG Qingsong, et al. The discussion on the age, amplitude and form of the uplift of the Qinghai-Tibet Plateau[J]. Science China,1979(6):608 − 616. (in Chinese)

    [2]

    彭建兵, 马润勇, 卢全中, 等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004(3):457 − 466. [PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet Plateau[J]. Advance in Earth Sciences,2004(3):457 − 466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018

    [3]

    高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质,2019,46(5):144 − 153. [GAO Bo, ZHANG Jiajia, WANG Junchao, et al. Formation mechanism and disaster characteristic of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology,2019,46(5):144 − 153. (in Chinese with English abstract)

    [4]

    余忠水, 德庆卓嘎, 罗布次仁, 等. 西藏波密县天摩沟“9·4”特大泥石流灾害成因初步分析[J]. 中国地质灾害与防治学报,2009,20(1):6 − 10. [YU Zhongshui, DE QING Zhuoga, LUOBU Ciren, et al. Preliminary analysis about the cause of “9·4” debris flow disaster in Tian mo gou, Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2009,20(1):6 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2009.01.002

    [5]

    施雅风, 杨宗辉, 谢自楚, 等. 西藏古乡地区的冰川泥石流[J]. 科学通报,1964(6):542 − 544. [SHI Yafeng, YANG Zonghui, XIE Zichu, et al. Glacier debris flow in Guxiang area, Tibet[J]. Chinese Science Bulletin,1964(6):542 − 544. (in Chinese with English abstract)

    [6]

    郭柳平, 叶庆华, 姚檀栋, 等. 基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究[J]. 冰川冻土,2007(4):517 − 524. [GUO Liuping, YE Qinghua, YAO Tandong, et al. The glacial landforms and the changes of glacier and lake area in the Mapam Yumco Basin in Tibetan Plateau based on GIS[J]. Journal of Glaciology and Geocryology,2007(4):517 − 524. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0240.2007.04.003

    [7]

    隋志龙, 李德威, 黄春霞. 断裂构造的遥感研究方法综述[J]. 地理学与国土研究,2002(3):34 − 37. [SUI Zhilong, LI Dewei, HUANG Chunxia. The review of remote sensing research methods of fault structures[J]. Geography and Territorial Research,2002(3):34 − 37. (in Chinese with English abstract)

    [8]

    张明华. 西藏墨脱公路工程地质灾害遥感勘察与解译方法[J]. 中国地质灾害与防治学报,2005(3):54 − 58. [ZHANG Minghua. Remote sensing image recognizing and interpreting for geological disasters in Motuo highway engineering of Tibet[J]. The Chinese Journal of Geological Hazard and Control,2005(3):54 − 58. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2005.03.012

    [9]

    张瑞丝, 陈建平, 曾敏. 基于Worldview-Ⅱ遥感影像的西藏改则地区断裂构造解译研究及应用[J]. 遥感技术与应用,2012,27(2):265 − 274. [ZHANG Ruisi, CHEN Jianping, ZENG Min. The study of structural interpretation based on Worldview-Ⅱ remote sensing image in Gaize, Tibet and its application[J]. Remote Sensing Technology and Application,2012,27(2):265 − 274. (in Chinese with English abstract) doi: 10.11873/j.issn.1004-0323.2012.2.265

    [10]

    王治华. 滑坡、泥石流遥感回顾与新技术展望[J]. 国土资源遥感,1999(3):10 − 15. [WANG Zhihua. Reviewing and prospecting for applying remote sensing to landslide and debrisflow investigation[J]. Remote Sensing for Land & Resources,1999(3):10 − 15. (in Chinese with English abstract)

    [11]

    吕杰堂, 王治华, 周成虎. 西藏易贡滑坡堰塞湖的卫星遥感监测方法初探[J]. 地球学报,2002(4):363 − 368. [LYU Jietang, WANG Zhihua, ZHOU Chenghu. A tentative discussion on the monitoring of the Yigong landslide-blocked lake with satellite remote sensing technique[J]. Acta Geoscientica Sinica,2002(4):363 − 368. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2002.04.014

    [12]

    李远华, 姜琦刚. 基于遥感调查与GIS分析的林芝地区地质灾害评价[J]. 国土资源遥感,2006(2):57 − 60. [LI Yuanhua, JI Qigang. The estimation of regional geo-hazards based on reinvestigation and GIS analysis[J]. Remote Sensing for Land & Resources,2006(2):57 − 60. (in Chinese with English abstract)

    [13]

    王高峰, 唐川, 王洪德, 等. 基于RS和GIS的雅鲁藏布江林芝-加查段沿线泥石流源地物源分析[J]. 水土保持通报,2012,32(1):10 − 13. [WANG Gaofeng, TANG Chuan, WANG Hongde, et al. RS and GIS based analysis of material sources in debris flow origin areas along Linzhi-Jiacha section in Yarlung Zangbo River[J]. Bulletin of Soil and Water Conservation,2012,32(1):10 − 13. (in Chinese with English abstract)

    [14]

    刘洋. 基于RS的西藏帕隆藏布流域典型泥石流灾害链分析[D]. 成都: 成都理工大学, 2013.

    LIU Yang. Research on the typical debris flows chain based on RS in Palongzangbu Basin of Tibet [D]. Chengdu: Chengdu University of Technology, 2013. (in Chinese with English abstract)

    [15]

    杨东旭, 游勇, 王军朝, 等. 藏东南帕隆藏布流域冰碛物典型特征及工程效应[J]. 防灾减灾工程学报,2020,40(6):841 − 851. [YANG Dongxu, YOU Yong, WANG Junchao, et al. Characteristics of typical glacial tills in Parlung Zangbo Basin in Southeastern Tibet and its engineering effect[J]. Journal of Disaster Prevention and Mitigation Engineering,2020,40(6):841 − 851. (in Chinese with English abstract)

    [16]

    施雅风, 刘时银. 中国冰川对21世纪全球变暖响应的预估[J]. 科学通报,2000(4):434 − 438. [SHI Yafeng, LIU Shiyin. The prediction of China glacier response to global warming in the 21st Century[J]. Chinese Science Bulletin,2000(4):434 − 438. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.2000.04.021

    [17]

    杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征[J]. 科学通报,2010,55(18):1775 − 1780. [YANG Wei, YAO Tandong, XU Boqing, et al. Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, soutbeast Tibetan Plateau[J]. Chinese Science Bulletin,2010,55(18):1775 − 1780. (in Chinese with English abstract) doi: 10.1360/csb2010-55-18-1775

    [18]

    张斌斌. 帕隆藏布流域海洋性冰川区泥石流特征研究[D]. 成都: 西南交通大学, 2016.

    ZHANG Binbin. Study on debris flow characteristics in temperate glacier area of Pallon Tsangpo [D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese with English abstract)

    [19]

    高杨, 李滨, 高浩源, 等. 高位远程滑坡冲击铲刮效应研究进展及问题[J]. 地质力学学报,2020,26(4):510 − 519. [GAO Yang, LI Bin, GAO Haoyuan, et al. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide[J]. Journal of Geomechanics,2020,26(4):510 − 519. (in Chinese with English abstract)

    [20]

    马泽平. 川藏交通廊道冰碛物工程性质研究[D]. 成都: 西南交通大学, 2013.

    MA Zeping. Study on engineering properties of the moraine in Sichuan-Tibet transportation corridor [D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese with English abstract)

    [21]

    杨栋, 王军朝, 杨东旭. 帕隆藏布流域冰碛物斜坡结构及稳定性评价方法[J]. 人民长江,2019,50(1):108 − 112. [YANG Dong, WANG Junchao, YANG Dongxu. Moraine slope structure in Parlung Zangbo River Basin and its stability evaluation method[J]. Yangtze River,2019,50(1):108 − 112. (in Chinese with English abstract)

    [22]

    BURBNK D W, ANDERSON R S. Tectonic Geomorphology[J]. Progress in Physical Geography,1991,15(2):193 − 205. doi: 10.1177/030913339101500206

    [23]

    SU Z, SHI Y,et al. Response of monsoonal temperate glaciers to global warming since the Little Ice Age[J]. Quaternary International,2002,97(98):123 − 131.

    [24]

    FUJITA K, AGETA Y. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model[J]. Journal of Glaciology,2000,46(153):244 − 252. doi: 10.3189/172756500781832945

    [25]

    INTRIERI E, FRASPINI, FUMAGALLI A, et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data[J]. Landslides,2017,15(1):123 − 133.

    [26]

    ZHAO CY, ZHONG L, et al. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sens Environ,2012,124:348 − 359.

    [27]

    周学铖, 廖黎明. 西藏萨迦县地质灾害危险性评价[J]. 中国地质灾害与防治学报,2019,30(6):113 − 116. [ZHOU Xuecheng, LIAO Liming. Geological hazard assessment in Sakya County of Tibet Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):113 − 116. (in Chinese with English abstract)

  • 加载中

(10)

(6)

计量
  • 文章访问数:  1650
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2021-05-21
修回日期:  2021-05-25
刊出日期:  2021-06-25

目录