中国地质环境监测院
中国地质灾害防治工程行业协会
主办

北京山区突发性地质灾害易发性评价

罗守敬, 王珊珊, 付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2021, 32(4): 126-133. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-17
引用本文: 罗守敬, 王珊珊, 付德荃. 北京山区突发性地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2021, 32(4): 126-133. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-17
LUO Shoujing, WANG Shanshan, FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 126-133. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-17
Citation: LUO Shoujing, WANG Shanshan, FU Dequan. Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 126-133. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-17

北京山区突发性地质灾害易发性评价

详细信息
    作者简介: 罗守敬(1984-),男,安徽马鞍山人,硕士,高级工程师,主要从事地质灾害评价及防治研究。E-mail:27484366@qq.com
  • 中图分类号: P694

Assessment on the susceptibility of sudden geological hazards in mountainous areas of Beijing

  • 北京山区地质环境条件复杂,发育大量突发地质灾害隐患,既直接威胁山区村庄、道路、景区的人员及设施的安全,又会对城镇的规划建设构成威胁。通过开展地质灾害易发性评价工作,划分出地质灾害易发区,以评价结果指导城镇建设规划,减轻地质灾害的威胁,这是一项十分重要的工作。文章在阐述北京山区崩塌、滑坡及泥石流突发地质灾害发育情况的基础上,选取了坡度、起伏度、工程地质岩组、地质构造、地貌类型及降水等6个影响因子,采用综合信息量模型方法,分别对北京山区斜坡类灾害(崩塌、滑坡)和泥石流灾害的易发性进行评价,并根据“就高不就低”的原则,叠加各灾种的易发性评价结果划分出北京山区突发地质灾害易发性分区图,为城镇建设适宜性评价、编制国土空间规划及完善空间治理提供科学的依据。

  • 加载中
  • 图 1  北京山区地质灾害现状分布图

    Figure 1. 

    图 2  北京山区地质灾害易发性分区评价网格图

    Figure 2. 

    图 3  斜坡类灾害易发性评价结果图

    Figure 3. 

    图 4  泥石流灾害易发性评价结果图

    Figure 4. 

    图 5  北京山区斜坡类灾害及泥石流灾害易发性评价结果图

    Figure 5. 

    表 1  崩塌、滑坡等斜坡类灾害易发性评价各评价因子信息量统计表

    Table 1.  Statistical table of information quantity of each evaluation factor for the assessment of the susceptibility of rock fall, landslide and unstable slope

    评价因子状态信息量计算信息量值评价因子状态信息量计算信息量值
    NiSiNSNiSiNS
    坡度<15°65810264308441957−0.136775地质构造无断裂分布236435489308441957−0.098450
    15°~35°2302276933084419570.1230161条断裂分布53252563084419570.319936
    >35°1244000308441957−0.8633502条断裂分布1349413084419570.661314
    起伏度/m0~3082514308441957−3.1397713条及以上断裂分布542713084419570.997283
    30~701202343308441957−0.361278地貌类型中山2499340308441957−1.014191
    70~2001457140853084419570.341687低山1756201883084419570.168368
    200~500148322271308441957−0.098800丘陵79678433084419570.322640
    500~100016744308441957−1.229034山间河谷22311463084419570.973557
    工程地质岩组坚硬岩组1367183663084419570.012535山间盆地0113084419570.000000
    较坚硬岩组120417247308441957−0.051571山间湖泊6398308441957−1.584275
    较软岩组1249233084419570.603070平原543031308441957−1.417246
    松散岩组3895421308441957−0.024038
    下载: 导出CSV

    表 2  崩塌、滑坡等斜坡类灾害易发性分区等级与实际地质灾害分布对比表

    Table 2.  Comparison between the grade of prone area of rock fall, landslide and unstable slope and the distribution of actual geological hazards

    易发程度信息量值a/%c/个b/%b/a
    高易发区0.770977~2.23342410.71128731.852.97
    中易发区−0.881988~0.77097756.76258964.071.13
    低易发区−4.983309~-0.88198832.531654.080.13
      注:1、a为本类易发性等级的面积占研究区总面积的百分比;b为落在该易发性分区内的灾害占灾害点总数的百分比;c为落在该类易发性分区内的灾害数量。2、上述面积统计不含密云水库的面积。
    下载: 导出CSV

    表 3  泥石流灾害易发性评价各评价因子信息量统计表

    Table 3.  Statistical table of information quantity of each evaluation factor for the assessment of the susceptibility of debris flow

    评价因子状态信息量计算 信息量值 评价因子状态信息量计算 信息量值
    NiSiNSNiSiNS
    坡度<15°806102641137941957−1.239438地貌类型丘陵89278431137941957−0.869035
    15°~35°87712769311379419570.1551469山间河谷6111461137941957−1.628283
    >35°1802400011379419570.5074785山间盆地01111379419570.000000
    起伏度0~30 m125141137941957−6.524755山间湖泊43981137941957−3.295282
    30~70 m7023431137941957−2.205816平原1830311137941957−3.8214
    70~200 m2650140851137941957−0.365675地质构造无断裂分布9308354891137941957−0.033473
    200~500 m83202227111379419570.32025261条断裂分布1661525611379419570.1529253
    500~1000 m33874411379419570.51588062条断裂分布32394111379419570.2355849
    工程地质岩组坚硬岩组61081836611379419570.2039743条及以上断裂分布8727111379419570.168665
    较坚硬岩组47181724711379419570.0086225降水>650 mm3275843111379419570.3592782
    较软岩组41892311379419570.5127279650~550 mm57301800211379419570.1601084
    松散岩组13554211137941957−2.387885550~450 mm2072128801137941957−0.522286
    地貌类型中山4056934011379419570.4707667<450 mm30226441137941957−0.864745
    低山63482018811379419570.1479272
    下载: 导出CSV

    表 4  泥石流灾害易发性分区等级与实际地质灾害分布对比表

    Table 4.  Comparison between the grade of prone area of debris flow and the distribution of actual geological hazards

    易发程度信息量值a/%c/个b/%b/a
    高易发区1.1206~2.124320.9956562.712.99
    中易发区−0.1453~1.120626.8027630.631.14
    低易发区−3.3329~−0.145346.63606.660.14
    不易发区−14.8717~−3.33295.58
      注:1、a为本类易发性等级的面积占研究区总面积的百分比;b为落在该易发性分区内的灾害占灾害点总数的百分比;c为落在该类易发性分区内的灾害数量。2、上述面积统计不含密云水库的面积。
    下载: 导出CSV

    表 5  北京山区斜坡类灾害及泥石流灾害易发性分区统计表

    Table 5.  Statistical table of debris flow prone areas in mountainous areas of Beijing

    易发性高易发区中易发区低易发区
    面积/km22718.984908.232348.03
    比例/%27.2649.2023.54
    地质灾害隐患点数量/个25122293137
    地质灾害隐患点密度/(个·km−20.920.470.06
      备注:上述面积统计不含密云水库的面积。
    下载: 导出CSV
  • [1]

    自然资源部. 资源环境承载能力和国土空间开发适宜性评价技术指南(试行)[S]. 2020.

    Ministry Of Natural Resources of the People’s Republic of China. Technical guide for assessment of resources and environment carrying capacity and suitability of land and space development (Trial)[S]. 2019. (in Chinese)

    [2]

    赵帅, 赵洲. 基于信息量模型的地质灾害易发性评价[J]. 水力发电,2019,45(3):27 − 32. [ZHAO Shuai, ZHAO Zhou. Geological hazard risk assessment based on information quantity model[J]. Water Power,2019,45(3):27 − 32. (in Chinese with English abstract) doi: 10.3969/j.issn.0559-9342.2019.03.007

    [3]

    崔志超, 王俊豪, 崔传峰, 等. 基于层次分析法和模糊数学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报,2020,31(1):44 − 50. [CUI Zhichao, WANG Junhao, CUI Chuanfeng, et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):44 − 50. (in Chinese with English abstract)

    [4]

    孙长明, 马润勇, 尚合欣, 等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)

    [5]

    张以晨, 秦胜伍, 翟健健, 等. 基于信息量的长白山地区泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):150 − 158. [ZHANG Yichen, QIN Shengwu, ZHAI Jianjian, et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai mountain area[J]. Hydrogeology & Engineering Geology,2018,45(2):150 − 158. (in Chinese with English abstract)

    [6]

    樊芷吟, 苟晓峰, 秦明月, 等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)

    [7]

    张波, 石长柏, 肖志勇, 等. 基于GIS和加权信息量的湖北鄂州地质灾害易发性区划[J]. 中国地质灾害与防治学报,2018,29(3):101 − 107. [ZHANG Bo, SHI Changbo, XIAO Zhiyong, et al. Geologic hazards susceptibility assessment in E'zhou City of Hubei Province based on GIS and weighted information value[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):101 − 107. (in Chinese with English abstract)

    [8]

    王雷, 吴君平, 赵冰雪, 等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei, WU Junping, ZHAO Bingxue, et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)

    [9]

    北京地质矿产勘查院. 北京“双评价”地质灾害专项评价报告[R]. 2019.

    Beijing Geology Prospecting Institute. Special evaluation report on "double evaluation" geological hazards in Beijing[R]. 2019. (in Chinese)

    [10]

    北京规划和自然资源委员会. 北京地质灾害统计台账[G]. 2019.

    Beijing Municipal Commission of Planning and Natural Resources. Beijing geological disaster statistics account [G]. 2019. (in Chinese)

    [11]

    彭珂, 彭红霞, 梁峰, 等. 基于信息量模型的赣州市地质灾害易发性分区[J]. 安全与环境工程,2018,25(5):22 − 28. [PENG Ke, PENG Hongxia, LIANG Feng, et al. Susceptibility zoning of geo-hazards in Ganzhou City based on the information model[J]. Safety and Environmental Engineering,2018,25(5):22 − 28. (in Chinese with English abstract)

    [12]

    北京水文地质工程地质大队, 北京地质研究所. 北京北山地区泥石流灾害勘查及其防治方案研究报告[R]. 1993.

    Beijing Institute of Hydrogeology and Engineering Geology, Beijing Institute of Geology. Hazard investigation and control report of debris flow disaster in Beishan area of Beijing[R]. 1993. (in Chinese)

    [13]

    北京地质研究所. 北京门头沟区清水河流域泥石流灾害勘查报告[R]. 1995.

    Beijing Institute of Geology. Hazard investigation report for debris flow at Qingshui river watershed in mentougou district of Beijing[R]. 1995. (in Chinese)

    [14]

    闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价—以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods: A case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)

    [15]

    罗守敬, 张国华. 北京月玉沟潜在泥石流特征及其动力学指标[J]. 中国地质灾害与防治学报,2016,27(1):44 − 48. [LUO Shoujing, ZHANG Guohua. Exploration and analysis of mouement condition of Yueyugou potential debris flow[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):44 − 48. (in Chinese with English abstract)

    [16]

    曹鹏, 侯圣山, 陈亮, 等. 基于数值模拟的群发性泥石流危险性评价: 以甘肃岷县麻路河流域为例[J]. 中国地质灾害与防治学报,2021,32(2):100 − 109. [CAO Peng, HOU Shengshan, CHEN Liang, et al. Risk assessment of mass debris flow based on numerical simulation: An example from the Malu River basin in Min County[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):100 − 109. (in Chinese with English abstract)

    [17]

    李晓婷, 刘文龙. 模糊综合评判法在甘肃陇南武都区石门乡泥石流危险性评价中的应用[J]. 中国地质灾害与防治学报,2020,31(4):71 − 76. [LI Xiaoting, LIU Wenlong. Application of fuzzy comprehensive evaluation method to debris flow risk evaluation in Shimen Township in Wudu District of Longnan City, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):71 − 76. (in Chinese with English abstract)

    [18]

    刘佳, 赵海军, 马凤山, 等. 基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(4):63 − 70. [LIU Jia, ZHAO Haijun, MA Fengshan, et al. Risk assessment of G109 Lhasa-Naqu Debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63 − 70. (in Chinese with English abstract)

    [19]

    张书豪, 吴光, 张乔, 等. 基于子流域特征的泥石流泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):142 − 149. [ZHANG Shuhao, WU Guang, ZHANG Qiao, et al. Debris-flow susceptibility assessment using the characteristic factors of a catchment[J]. Hydrogeology & Engineering Geology,2018,45(2):142 − 149. (in Chinese with English abstract)

    [20]

    涂汉明, 刘振东. 中国地势起伏度研究[J]. 测绘学报,1991,20(4):311 − 319. [TU Hanming, LIU Zhendong. Study on relief amplitude in China[J]. Acta Geodaetica et Cartographic Sinica,1991,20(4):311 − 319. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-1595.1991.04.009

    [21]

    张竞, 杜东, 白耀楠, 等. 基于DEM的京津冀地区地形起伏度分析[J]. 中国水土保持,2018(9):33 − 37. [ZHANG Jing, DU Dong, BAI Yaonan, et al. Terrain fluctuation analysis of Beijing-Tianjin-Hebei area based on DEM[J]. Soil and Water Conservation in China,2018(9):33 − 37. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0941.2018.09.011

    [22]

    工程地质手册编委会. 工程地质手册(第四版): [M]. 北京: 2006.

    Editorial Committee of Engineering Geology Manual. Geological Engineering Handbook (the 4th edition): [M]. Beijing: China Architecture & Building Press, 2006. (in Chinese)

    [23]

    北京地质研究所. 北京突发地质灾害详细调查报告(1: 50000)[R]. 2014.

    Beijing Institute of Geology. The detailed investigation report for sudden geological disasters of Beijing(1: 50000)[R]. 2014. (in Chinese)

    [24]

    郭学飞, 王志一, 焦润成, 等. 基于层次分析法的北京市地质环境质量综合评价[J]. 中国地质灾害与防治学报,2021,32(1):70 − 76. [GUO Xuefei, WANG Zhiyi, JIAO Runcheng, et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):70 − 76. (in Chinese with English abstract)

    [25]

    北京地质研究所. 北京地貌图(1∶100000)编制说明书[R]. 2017.

    Beijing Institute of Geology. Compilation specification of Beijing geomorphologic map (1: 100000)[R]. 2017. (in Chinese)

    [26]

    程素珍, 路璐, 翟淑花, 等. 2004—2018年北京市突发地质灾害时空分布特点和监测预警状况[J]. 中国地质灾害与防治学报,2020,31(6):38 − 46. [CHENG Suzhen, LU Lu, ZHAI Shuhua, et al. Temporal-spatial distribution and monitoring and early warning of sudden geological disasters in Beijing during the period of 2004 to 2018[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):38 − 46. (in Chinese with English abstract)

  • 加载中

(5)

(5)

计量
  • 文章访问数:  1587
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2020-07-02
修回日期:  2020-09-01
刊出日期:  2021-08-25

目录