中国地质环境监测院
中国地质灾害防治工程行业协会
主办

四川省冕宁县华岩子沟火后泥石流成灾机理

张绍科, 胡卸文, 王严, 金涛, 杨瀛. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报, 2021, 32(5): 79-85. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09
引用本文: 张绍科, 胡卸文, 王严, 金涛, 杨瀛. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报, 2021, 32(5): 79-85. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09
ZHANG Shaoke, HU Xiewen, WANG Yan, JIN Tao, YANG Ying. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79-85. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09
Citation: ZHANG Shaoke, HU Xiewen, WANG Yan, JIN Tao, YANG Ying. Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 79-85. doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09

四川省冕宁县华岩子沟火后泥石流成灾机理

  • 基金项目: 国家自然科学基金项目(41731285;41672283)
详细信息
    作者简介: 张绍科(1994-),男,四川成都人,硕士研究生,主要从事工程地质、地质灾害方面的研究。E-mail:1575419786@qq.com
    通讯作者: 胡卸文(1963-),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com
  • 中图分类号: P642.23

Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province

More Information
  • 以四川省冕宁县腊窝乡华岩子沟2019年7月发生的火后泥石流为典型案例,通过对火烧迹地现场地质勘察、降雨模拟试验研究了与火后泥石流形成相关的地形地貌、火行为分布、松散物源规模、产流产沙特征以及相应的灰烬层、斥水性、渗透性等相关试验。结果表明:(1)火烧迹地的斥水性强度越强,径流产流量越大;(2)严重火烧区的产沙量明显高于中度和轻度火烧区;(3)火烧迹地的斥水性与火烈度大致呈正相关,而渗透性恰好与之相反。研究揭示了火后泥石流的演变过程,为火后泥石流的防治和预警提供了理论依据。

  • 加载中
  • 图 1  岩石自然风化破碎现象

    Figure 1. 

    图 2  不同火烈度区域代表照片

    Figure 2. 

    图 3  火烈度及沟道分布情况

    Figure 3. 

    图 4  火烧迹地坡面物源特征

    Figure 4. 

    图 5  渗透性与斥水性的测定

    Figure 5. 

    图 6  斥水性与火烈度关系

    Figure 6. 

    图 7  火烈度与渗透系数关系

    Figure 7. 

    图 8  基于火烧迹地侵蚀的降雨模拟试验

    Figure 8. 

    图 9  WDPT均值与累计径流产流量关系

    Figure 9. 

    图 10  火烈度与累计产流量及产流速率关系

    Figure 10. 

    图 11  累计产沙量与坡度关系

    Figure 11. 

    图 12  火烈度与累计产沙量及产沙速率关系

    Figure 12. 

    图 13  沟道堵溃与下切掏蚀现象

    Figure 13. 

    表 1  火烈度划分标准

    Table 1.  Fire severity classification standard

    依据火烈度地面覆盖物过火情况树干(枝)烧黑高度树叶烧毁情况
    未火烧未过火未烧黑绿色
    轻度地面草,落叶过火;
    草桩,腐殖质层保留
    树枝未烧到,
    树干烧黑小于3 m
    树叶基本绿色
    中度地面草,落叶,
    半腐殖质层基本烧毁
    树干烧黑高度
    5~10 m,树梢保留
    树叶多为黄色,
    少数黑色
    重度地面草,落叶,
    半腐殖质层全部烧毁
    树干烧黑高度
    大于10 m,或
    全黑或树桩烧断
    树叶烧毁或保
    留全黑树梢
    下载: 导出CSV
  • [1]

    胡卸文, 王严, 杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract)

    [2]

    WELLS W G II. The effects of fire on the generation of debris flows in southern California[M]//Debris Flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America, 1987: 105-114.

    [3]

    CANNON S H. Debris-flow generation from recently burned watersheds[J]. Environmental and Engineering Geoscience,2001,7(4):321 − 341. doi: 10.2113/gseegeosci.7.4.321

    [4]

    任云, 胡卸文, 王严, 等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6):150 − 156. [REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology,2018,45(6):150 − 156. (in Chinese with English abstract)

    [5]

    KEY C H, BENSON N C.LANDSCAPE assessment (LA) sampling and analysis methods [C]//FIREMON: Fire Effects Monitoring and Inventory System, Lutes D C edit, Rocky Mountain Research StationRMRS-GTR-164-CD, 2006.

    [6]

    刘发林, 杨继敏. 火干扰对径流及土壤侵蚀的模拟研究[J]. 土壤通报,2015,46(4):858 − 865. [LIU Falin, YANG Jimin. Simulation study of fire disturbance on runoff and soil erosion[J]. Chinese Journal of Soil Science,2015,46(4):858 − 865. (in Chinese with English abstract)

    [7]

    DEBANO L F. Water repellent soils: a state-of-the-art[R]. U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, 1981.

    [8]

    陈俊英, 吴普特, 张智韬, 等. 土壤斥水性对含水率的响应模型研究[J]. 农业机械学报,2012,43(1):63 − 67. [CHEN Junying, WU Pute, ZHANG Zhitao, et al. Response models for soil water repellency and soil moisture[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(1):63 − 67. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2012.01.013

    [9]

    王严, 胡卸文, 杨瀛, 等. 火烧迹地土壤斥水性和渗透性变化特性[J]. 水文地质工程地质,2019,46(6):40 − 45. [WANG Yan, HU Xiewen, YANG Ying, et al. Research on the change in soil water repellency and permeability in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(6):40 − 45. (in Chinese with English abstract)

    [10]

    BADÍ A-VILLAS D, GONZÁ LEZ-PÉ REZ J A, AZNAR J M, et al. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire[J]. Geoderma,2014,213:400 − 407. doi: 10.1016/j.geoderma.2013.08.038

    [11]

    DOERR S H, DOUGLAS P, EVANS R C, et al. Effects of heating and post-heating equilibration times on soil water repellency[J]. Soil Research,2005,43(3):261. doi: 10.1071/SR04092

    [12]

    DEBANO L F, SAVAGE S M, HAMILTON D A. The transfer of heat and hydrophobic substances during burning[J]. Soil Science Society of America Journal,1976,40(5):779 − 782. doi: 10.2136/sssaj1976.03615995004000050043x

    [13]

    SIMANTON J R, WINGATE G D, WELTZ M A. Runoff and sediment from a burned sagebrush community [M]. Proceedings of the Symposium, 1990: 14 - 17.

    [14]

    郝红兵, 赵松江, 李胜伟, 等. 汶川地震区特大泥石流物源集中启动模式和特征[J]. 水文地质工程地质,2015,42(6):159 − 165. [HAO Hongbing, ZHAO Songjiang, LI Shengwei, et al. The star-up mode on large debris flow material source in Wenchuan earthquake region[J]. Hydrogeology & Engineering Geology,2015,42(6):159 − 165. (in Chinese with English abstract)

    [15]

    贺小黑, 彭鑫, 谭建民, 等. 地下水渗流对崩坡积滑坡稳定性和变形的影响: 以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报,2020,31(6):96 − 103. [HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: Taking Chunfeng landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):96 − 103. (in Chinese with English abstract)

    [16]

    CANNON S H, GARTNER J E. Wildfire-related debris flow from a hazards perspective Debris-Flow Hazards and Related Phenomena[J].[s.n.], 2005: 363-385.

    [17]

    刘云, 康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):112. [LIU Yun, KANG Huijun. Analysis of spatial and temporal distribution characteristics of landslide and debris flow disasters in Jiangxi[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):112. (in Chinese with English abstract)

    [18]

    李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, etal. The temporal and spatial evolution characteristics of landslides in the debris flow basin of Beichuan County, Wenchuan earthquake area[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)

    [19]

    殷万清, 金涛, 胡卸文, 等. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报,2021,32(3):61 − 69. [YIN Wanqing, JIN Tao, HU Xiewen, et al. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):61 − 69. (in Chinese with English abstract)

  • 加载中

(13)

(1)

计量
  • 文章访问数:  1432
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2021-01-13
修回日期:  2021-02-03
刊出日期:  2021-10-25

目录