中国地质环境监测院
中国地质灾害防治工程行业协会
主办

降雨及库水位影响下麻地湾滑坡地下水响应特征分析

檀梦皎, 殷坤龙, 付智勇, 朱春芳, 陶小虎, 朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析[J]. 中国地质灾害与防治学报, 2022, 33(1): 45-57. doi: 10.16031/j.cnki.issn.1003-8035.2022.01-06
引用本文: 檀梦皎, 殷坤龙, 付智勇, 朱春芳, 陶小虎, 朱延辉. 降雨及库水位影响下麻地湾滑坡地下水响应特征分析[J]. 中国地质灾害与防治学报, 2022, 33(1): 45-57. doi: 10.16031/j.cnki.issn.1003-8035.2022.01-06
TAN Mengjiao, YIN Kunlong, FU Zhiyong, ZHU Chunfang, TAO Xiaohu, ZHU Yanhui. Analysis on groundwater response characteristics of Madiwan landslide under the influence of rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 45-57. doi: 10.16031/j.cnki.issn.1003-8035.2022.01-06
Citation: TAN Mengjiao, YIN Kunlong, FU Zhiyong, ZHU Chunfang, TAO Xiaohu, ZHU Yanhui. Analysis on groundwater response characteristics of Madiwan landslide under the influence of rainfall and reservoir water[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 45-57. doi: 10.16031/j.cnki.issn.1003-8035.2022.01-06

降雨及库水位影响下麻地湾滑坡地下水响应特征分析

  • 基金项目: 中国地质调查局地质调查项目(DD20190354);国家重点研发计划项目(2018YFC0809400)
详细信息
    作者简介: 檀梦皎(1995-),女,助理工程师,硕士,主要从事水文地质、工程地质方面的工作。E-mail:mengjiao_tania@163.com
    通讯作者: 殷坤龙(1963-),男,教授,博士生导师,主要从事地质灾害预测预报与风险管理方面的研究。E-mail:yinkl@126.com
  • 中图分类号: P642.22

Analysis on groundwater response characteristics of Madiwan landslide under the influence of rainfall and reservoir water

More Information
    Corresponding author: YIN Kunlong
  • 精细化衡量地下水对外界因素的响应规律对分析滑坡稳定性具有重要意义。考虑库岸边坡的稳定性同时受库水位和降雨作用影响,提出了一种基于数据挖掘的滑坡地下水响应特征的研究方法。以三峡库区麻地湾滑坡为例,首先通过特征时段分析和Granger检验确定地下水响应滞后期,然后基于响应滞后期确定地下水水位的影响因素,结合Apriori数据挖掘算法揭示了麻地湾滑坡地下水的响应特征。研究结果表明:滑坡前缘地下水变化与库水位波动相关性较大,滑坡中后缘地下水变化与降雨相关性较大; 麻地湾滑坡地下水对于降雨和库水位的最佳响应滞后期为1 d;滑坡后缘的地下水水位对降雨响应较为强烈,而前缘的地下水水位对库水位响应更为强烈。

  • 加载中
  • 图 1  地下水响应特征研究流程图

    Figure 1. 

    图 2  三峡库区库水位变化图

    Figure 2. 

    图 3  麻地湾滑坡Ⅰ-Ⅰ′剖面示意图

    Figure 3. 

    图 4  麻地湾滑坡监测仪器布置图

    Figure 4. 

    图 5  地表位移变化速率与降雨时间序列图

    Figure 5. 

    图 6  地表位移变化速率与库水位变化时间序列图

    Figure 6. 

    图 7  麻地湾滑坡地下水位监测曲线

    Figure 7. 

    图 8  特征降雨时段地下水响应图

    Figure 8. 

    图 9  库水下降时段地下水位响应图

    Figure 9. 

    图 10  库水上升时段地下水位响应图

    Figure 10. 

    图 11  麻地湾滑坡地下水响应关联规则挖掘流程图

    Figure 11. 

    表 1  地下水位及库水位平稳性检验结果表

    Table 1.  Stationarity test results of groundwater and reservoir water level

    序列1%水平5%水平10%水平TP结论
    库水位−2.5984−1.9455−1.6137−5.70750.0000平稳
    STK1−2.5989−1.9455−1.6137−3.13860.0021平稳
    STK2−4.0925−3.4743−3.1644−4.96190.0007平稳
    STK3−3.5256−2.9029−2.5889−4.28050.0010平稳
    下载: 导出CSV

    表 2  库水位—地下水Granger检验结果

    Table 2.  Granger test results of reservoir water-groundwater

    原假设对象滞后期/dF统计量显著性概率
    STK153.001900.0180
    43.079220.0227
    33.467860.0214
    25.211930.0080
    19.276320.0033
    05.211930.0080
    STK251.522800.1975
    41.744340.1524
    31.519330.2183
    20.852630.4310
    10.165410.6855
    00.852630.4310
    STK350.808520.5485
    41.098650.3657
    30.276790.8419
    20.280170.7566
    10.514920.4755
    00.280170.7566
    下载: 导出CSV

    表 4  降雨—地下水Granger检验结果

    Table 4.  Granger test results of reservoir water-groundwater

    原假设对象一阶差分滞后期/dF统计量显著性概率
    ΔSTK153.474070.0140
    44.873260.0035
    37.7177420.0007
    210.72370.0002
    117.93220.0001
    010.72370.0002
    ΔSTK253.956760.0071
    45.434350.0048
    38.021010.0003
    212.38440.0000
    119.22970.0000
    012.38440.0000
    ΔSTK351.985450.1096
    42.768180.0435
    34.032970.0143
    25.489460.0079
    110.38150.0025
    05.489460.0049
    下载: 导出CSV

    表 3  地下水位及降雨平稳性检验结果表

    Table 3.  Stationary test results of rainfall and reservoir water level

    序列1%水平5%水平10%水平TP结论
    日降雨−3.6847−2.9281−2.6022−5.76660.0000平稳
    STK1−3.5847−2.9281−2.6022−1.94090.3112不平稳
    STK2−4.1756−3.5130−3.1868−4.14660.0083不平稳
    STK3−4.1809−3.5155−3.1882−2.81010.2015不平稳
    ΔSTK1−3.5885−2.9297−2.6030−7.36860.0000平稳
    ΔSTK2−2.6185−1.9484−1.6121−7.36900.0000平稳
    ΔSTK3−4.2191−3.5330−3.1983−5.57520.0003平稳
    下载: 导出CSV

    表 5  降雨数据定性分级表

    Table 5.  Qualitative classification table of rainfall

    降雨等级单日降雨量/mm定性化值
    小雨[0,10)LightRain
    中雨[10,25)ModerateRain
    大雨[25,55)HeavyRain
    暴雨≥55TorrentialRain
    下载: 导出CSV

    表 6  库水位变动数据定性分级表

    Table 6.  Qualitative classification table of reservoir water level fluctuations

    降雨等级单日库水变化/m定性化值
    水位快速上升≥1.0QuicklyFill
    水位中速上升[0.4,1.0)MediumFill
    水位慢速上升[0,0.4)SlowlyFill
    水位慢速下降(−0.2,0)SlowlyDewater
    水位中速下降(−0.4,0.2]MediumDewater
    水位快速下降≤−0.4QuicklyDewater
    下载: 导出CSV

    表 7  地下水变动数据定性分级表

    Table 7.  Qualitative classification table of groundwater fluctuations

    降雨等级单日水位变化/m定性化值
    水位快速上升≥1.0QuicklyRise
    水位中速上升[0.1,1.0)MediumRise
    水位慢速上升[0,0.1)SlowlyRise
    水位慢速下降(−0.1,0)SlowlyDecline
    水位中速下降(−0.5,0.1]MediumDecline
    水位快速下降≤-0.5QuicklyDecline
    下载: 导出CSV

    表 8  地下水响应关联规则挖掘列表

    Table 8.  Groundwater response association rule mining result list

    原假设对象一阶差分规则支持度/%置信度/%提升度
    ΔSTK1YR=LightRain&TR=HeavyRain&ΔYW=SlowlyFill→SlowlyRise3.40804.67
    YR=HeavyRain&RR=TorrentialRain&ΔYW=Slowlydewater→QuicklyRise0.728024.25
    YR=HeavyRain&ΔYW=SlowyDewater&ΔTW=SlowyDewater→MediumRise0.88809.42
    ΔSTK2RR=TorrentialRain&TR=HeavyRain→QuicklyRise1.2585.7133.10
    RR=ModerateRain&ΔTW=MediumDewater&
    ΔYW=MediumDewater&TR=LifhtRain→MediumRise
    0.8393.3316.09
    ΔYW=QuicklyDewater&YR=LightRain&
    ΔTW=SlowlyFill→SlowlyDecline
    1.9471.421.47
    ΔSTK3TR=HeavyRain&YR=LightRain&ΔTW=SlowlyDeWater→SlowlyRise0.72803.30
    YR=HeavyRain&RR=HeavyRain&ΔYW=QuicklyDewater→QuicklyRise0.4210031.07
    YR=ModerateRain&RR=ModerateRain&
    ΔYW=SlowlyFill→MediumRise
    0.4310017.09
    下载: 导出CSV

    表 9  麻地湾滑坡地下水水位响应判别矩阵

    Table 9.  Groundwater level response judgment matrix of Madiwan landslide

     STK1STK2STK3
     小雨中雨大雨暴雨小雨中雨大雨暴雨小雨中雨大雨暴雨
    快速
    蓄水
    □升降△上升△上升◇上升□升降△上升◇上升◇升降□升降△上升◇上升◇上升
    中速
    蓄水
    □升降△上升△上升◇上升□升降△上升◇上升◇升降□升降△升降◇升降◇上升
    慢速
    蓄水
    □升降△上升△上升◇上升□升降△上升◇上升◇升降□升降△上升△上升◇上升
    慢速
    降水
    □下降□下降△上升◇上升□升降△上升◇上升◇升降□升降△上升◇上升◇上升
    中速
    降水
    △下降△下降□上升◇上升□升降△上升◇上升◇升降□升降△升降△升降◇上升
    快速
    降水
    △下降△下降□上升◇上升□升降□上升◇上升◇升降□升降□上升◇上升◇上升
      注:□代表“慢速”;△代表“中速” ;◇代表“快速”。
    下载: 导出CSV
  • [1]

    JIANG J, EHRET D, XIANG W, et al. Numerical simulation of Qiaotou landslide deformation caused by drawdown of the Three Gorges Reservoir, China[J]. Environmental Earth Sciences,2011,62(2):411 − 419.

    [2]

    卢书强, 易庆林, 易武, 等. 库水下降作用下滑坡动态变形机理分析—以三峡库区白水河滑坡为例[J]. 工程地质学报,2014,22(5):869 − 875. [LU Shuqiang, YI Qinglin, YI Wu, et al. Study on dynamic deformation mechanism of landslide in drawdown of reservoir water level—take Baishuihe Landslide in Three Gorges Reservoir area for example[J]. Journal of Enginneering Geology,2014,22(5):869 − 875. (in Chinese with English abstract)

    [3]

    JIAN W, XU Q, YANG H, et al. Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China[J]. Environmental Earth Sciences,2014,72(8):2999 − 3013.

    [4]

    江强强, 焦玉勇, 宋亮, 等. 降雨和库水位联合作用下库岸滑坡模型试验研究[J]. 岩土力学,2019,40(11):239 − 248. [JIANG Qiangqiang, JIAO Yuyong, SONG Liang, et al. Experimental study on reservoir landslide under rainfall and water-level fluction[J]. Rock and Soil Mechanics,2019,40(11):239 − 248. (in Chinese with English abstract)

    [5]

    徐永强, 祁小博, 张楠. 基于降雨与库水位耦合的三舟溪滑坡渗流模拟及稳定性分析[J]. 水文地质工程地质,2016,43(5):111 − 118. [XU Yongqiang, QI Xiaobo, ZHANG Nan. Numerical simulation and stability analysis for the seepage flow in the Sanzhouxi landslide under the associative action of reservoir water level fluctuations and rainfall infiltration[J]. Hydrogeology&Engineering Geoloy,2016,43(5):111 − 118. (in Chinese with English abstract)

    [6]

    杨强,叶振南,高幼龙. 库水波动条件下滑坡体消落带响应关系研究[J]. 灾害学,2014,29(2):29 − 32. [YANG Qiang, YE Zhennan, GAO Youlong. Response relationship of riparian zone of the landslide mass with reservoir water fluctuation conditions[J]. Journal of Catastrophology,2014,29(2):29 − 32. (in Chinese with English abstract)

    [7]

    HONG Y, HIURA H, SHINO K, et al. Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system -case study on Zentoku landslide, Japan[J]. Landslides,2005,2(1):31 − 41.

    [8]

    王如宾, 夏瑞, 祁健, 等. 水动力型滑坡堆积体渗流稳定性数值分析[J]. 三峡大学学报(自然科学版),2019,41(2):50 − 54. [WANG Rubin, XIA Rui, QI Jian, et al. Numerical analysis of seepage stability of hydrodydynamic-induced landslide deposits[J]. Journal of China Three Gorges University(Natural Science),2019,41(2):50 − 54. (in Chinese with English abstract)

    [9]

    唐扬, 殷坤龙, 唐子珺. 基于HYDRUS的三舟溪滑坡降雨入渗规律研究[J]. 水文地质工程地质,2017,44(1):152 − 156. [TANG Yang, YIN Kunlong,TANG Zijun. Researech on the regulation of rain infiltration in the Sanzhouxi landslide based on HYDRUS[J]. Hydrogeology & Engineering Geology,2017,44(1):152 − 156. (in Chinese with English abstract)

    [10]

    卓万生. 雨强对安溪县尧山村滑坡地下水渗流系统及稳定性的影响研究[J]. 工程地质学报,2020,28(6):1311 − 1318. [ZHUO Wansheng. Influence on groundwater seepage system and stability of landslide under rainfall in Yaoshan village, Anxi county[J]. Journal of Engineering Geology,2020,28(6):1311 − 1318. (in Chinese with English abstract)

    [11]

    冯文凯, 石豫川, 柴贺军, 等. 降雨及库水升降作用下地下水浸润线简化求解[J]. 成都理工大学学报(自然科学版),2006(1):90 − 94. [FENG Wenkai, SHI Yuchunan, CHAI Hejun, et al. The simplified soluation of phreatic saturation line under the actions of rainfall and reservoir water fluctuation[J]. Journal of Chendu Unversity of Technology(Science&Technology Edition),2006(1):90 − 94. (in Chinese with English abstract)

    [12]

    郭子正, 殷坤龙, 唐扬, 等. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测[J]. 地质科技情报,2017,36(4):260 − 265. [GUO Zizheng, YIN Kunlong, TANG Yang, et al. Stability evaluation and prediction of Maliulin Landslide under reservoir water level decline and rainfall[J]. Geological Science and Technology Information,2017,36(4):260 − 265. (in Chinese with English abstract)

    [13]

    肖婷, 殷坤龙, 杨背背. 三峡库区四方碑滑坡稳定性与变形趋势预测[J]. 中国地质灾害与防治学报,2018,29(1):10 − 14. [XIAO Ting, YIN Kunlong, YANG Beibei. Stability and deformation trend prediction of the Sifangbei landslide in the Three Gorges Reservoir[J]. The China Journal of Geological Hazard and Control,2018,29(1):10 − 14. (in Chinese with English abstract)

    [14]

    汤明高, 杨何, 许强, 等. 三峡库区滑坡土体渗透特性及参数研究[J]. 工程地质学报,2019,27(2):110 − 117. [TANG Minggao, YANG He, XU Qiang, et al. Permeability and parameters of landslide bodies in Three Gorges Reservoir Area[J]. Journal of Engineering Geology,2019,27(2):110 − 117. (in Chinese with English abstract)

    [15]

    HUANG B, YIN Y, LIU G, et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008[J]. Landslides,2012,9(3):395 − 405.

    [16]

    蒋文明, 王鲁琦, 赵鹏, 等. 三峡库区箭穿洞危岩体变形破坏模式与防治效果分析[J]. 中国地质灾害与防治学报,2021,32(5):105 − 112. [JIANG Wenming, WANG Luqi, ZHAO Peng, et al. Analyses on failure modes and effectiveness of the prevention measures of Jianchuandong dangerous rock mass in the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):105 − 112. (in Chinese with English abstract)

    [17]

    王平, 胡明军, 黄波林, 等. 三峡库区巫峡剪刀峰顺层岩质岸坡破坏模式分析[J]. 中国地质灾害与防治学报,2021,32(5):52 − 61. [WANG Ping, HU Mingjun, HUANG Bolin, et al. An analysis on the destruction mode of Wuxia scissors peak down the shore slope in the Three-Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):52 − 61. (in Chinese with English abstract)

    [18]

    卫童瑶, 殷跃平, 高杨, 等. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质,2020,47(4):73 − 81. [WEITongyao, YINYueping, GAOYang, et al. Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2020,47(4):73 − 81. (in Chinese with English abstract)

    [19]

    贺小黑, 彭鑫, 谭建民, 等. 地下水渗流对崩坡积滑坡稳定性和变形的影响—以湖南安化春风滑坡群为例[J]. 中国地质灾害与防治学报,2020,31(6):96 − 103. [HE Xiaohei, PENG Xin, TAN Jianmin, et al. Influence of groundwater seepage on stability and deformation of colluvial deposit landslide: taking Chunfeng Landslide group in Anhua County of Hunan Province as an example[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):96 − 103. (in Chinese with English abstract)

    [20]

    顾轩, 姜月华, 杨国强, 等. 水位变动条件下二元结构岸坡稳定性分析—以扬中市指南村崩岸段岸坡为例[J]. 华东地质,2021,42(1):76 − 84. [GU Xuan, JIANG Yuehua, YANG Guoqiang, et al. Stability analysis of dual structure bank slope under the condition of water level fluctuation: Take the bank of Zhinancun bank collapsed in Yangzhong City as an example[J]. East China Geology,2021,42(1):76 − 84. (in Chinese with English abstract)

    [21]

    RODRGUEZ-RIVERO J, RAMIREZ J, MARTÍNEZ-MURCIA F J, et al. Granger causality-based information fusion applied to electrical measurements from power transformers[J]. Information Fusion,2019:57.

    [22]

    邓冬梅. 基于集合经验模态分解的水库库岸滑坡阶跃型位移预测研究[D]. 武汉: 中国地质大学, 2018.

    DENG Dongmei. Study of stepwise displacement prediction for reservoir landslides based on ensemble empirical mode decomposition[D].Wuhan: China University of Geosciences, 2018.(in Chinese with English abstract)

    [23]

    马俊伟. 渐进式滑坡多场信息演化特征与数据挖掘研究[D]. 武汉: 中国地质大学, 2016.

    MA Junwei. Evolution characteristics of multiple physics-based parameters and data miningtechnology for progressive landslides[D]. Wuhan:China University of Geosciences, 2016.(in Chinese with English abstract)

    [24]

    杨柯, 叶润青, 付小林, 等. 三峡库区第四系特征关联规则分析[J]. 人民长江,2021,51(6):118 − 124. [YANG ke, YE Runqing, FU Xiaolin, et al. Analysis on association rules of quaternary characteristics in Three Gorgess Reservoir Area[J]. Yangtze River,2021,51(6):118 − 124. (in Chinese with English abstract)

    [25]

    AGRAWAL R , SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. IEEE, 1994: 487 − 499.

    [26]

    杨背背. 三峡库区万州区库岸堆积层滑坡变形特征及位移预测研究[D]. 武汉: 中国地质大学, 2019.

    YANG Beibei. Deformation characteristics and displacement prediction of colluvial landslides in Wanzhou County, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2019.(in Chinese with English abstract)

    [27]

    刘毅. 三峡库区万州区堆积体滑坡地下水响应及稳定性研究[D]. 武汉: 中国地质大学, 2018.

    LIU Yi. Stability analysis of colluvial landslide in relation to groundwater response in Wanzhou District, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2018.(in Chinese with English abstract)

  • 加载中

(11)

(9)

计量
  • 文章访问数:  2055
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-08-16
修回日期:  2021-08-24
刊出日期:  2022-02-25

目录