中国地质环境监测院
中国地质灾害防治工程行业协会
主办

落石正、反转转速对法向恢复系数影响的室内试验

王庭辉, 姬中民, 伍法权, 贾嘉, 褚怀保. 落石正、反转转速对法向恢复系数影响的室内试验[J]. 中国地质灾害与防治学报, 2022, 33(2): 42-52. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-06
引用本文: 王庭辉, 姬中民, 伍法权, 贾嘉, 褚怀保. 落石正、反转转速对法向恢复系数影响的室内试验[J]. 中国地质灾害与防治学报, 2022, 33(2): 42-52. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-06
WANG Tinghui, JI Zhongmin, WU Faquan, JIA Jia, CHU Huaibao. Experiment on the effect of forward and reverse rotation speeds of rockfall on normal restitution coefficient[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 42-52. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-06
Citation: WANG Tinghui, JI Zhongmin, WU Faquan, JIA Jia, CHU Huaibao. Experiment on the effect of forward and reverse rotation speeds of rockfall on normal restitution coefficient[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 42-52. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-06

落石正、反转转速对法向恢复系数影响的室内试验

  • 基金项目: 国家自然科学基金重点项目(41831290)
详细信息
    作者简介: 王庭辉(1982-),男,讲师,主要从事工程防护方面研究工作。E-mail: wangtinghui425@hpu.edu.cn
    通讯作者: 姬中民(1988-),男,博士,讲师,主要从事落石灾害预测与防治方面研究工作。E-mail:gang880129@126.com
  • 中图分类号: P554

Experiment on the effect of forward and reverse rotation speeds of rockfall on normal restitution coefficient

More Information
  • 为探究落石正转和反转转速对法向恢复系数(Rn)的影响,选制正方、圆盘和圆柱三种典型形状试块,通过专门研发的落石碰撞测试装置,开展不同正转和反转转速下试块绕XY轴与坡面的碰撞测试。试验结果表明:圆盘和圆柱状试块绕Y轴旋转时(近似正碰),转速对Rn基本无影响;3种形状试块绕X轴旋转时(非正碰),转速和Rn存在一定相关性,但Rn还受到试块形状和冲击姿态联合影响。为此,引入综合变量-冲击姿态系数(IPC)来量化转速对Rn的影响。鉴于不同冲击姿态下法向冲击力对Rn的力学作用机制存在差异,对试块冲击回弹特征采取分类探讨。一次冲击回弹型,正转试验中质心(C)在接触点(CP)之后和C在CP之前条件下,IPCRn分别呈线性正相关和负相关关系;反转试验结果则正好相反。二次冲击回弹型,无论正转或反转,第一次冲击C在CP之前或之后,各形状试块IPCRn均为强正相关,但各工况下的相关规律并不一致。这些获得的结论基本揭示了转速对Rn的影响关系,同时为转动异形落石冲击回弹过程的精准预测提供了参考。

  • 加载中
  • 图 1  落石冲击测试装置

    Figure 1. 

    图 2  试验中所采用的不同形状的试块

    Figure 2. 

    图 3  不同形状试块Rn值与正转转速的关系

    Figure 3. 

    图 4  不同形状试块Rn值与反转转速的关系

    Figure 4. 

    图 5  试块冲击回弹特征分类示意图

    Figure 5. 

    图 6  IPCRn的影响机理

    Figure 6. 

    图 7  正转试验中I-1类型试块IPCRn的关系

    Figure 7. 

    图 9  正转试验中I-2类型试块IPCRn的关系

    Figure 9. 

    图 8  反转试验中I-1类型试块IPCRn的关系

    Figure 8. 

    图 10  正转试验I-2类型试块IPCRn的影响示意图

    Figure 10. 

    图 11  正转试验F-2条件下试块对坡面第一次冲击与第二次冲击剧烈程度及接触角(θθ1)对比

    Figure 11. 

    图 12  正转试验B-2条件下接触角(θθ1)对比

    Figure 12. 

    图 13  反转试验中I-2类型试块IPCRn的关系

    Figure 13. 

    表 1  试块与坡面特征参数及试验初始条件

    Table 1.  The characteristic parameters of the block and slope and the initial conditions of the test

    试块特征
    岩石类型形状尺寸V/(m∙s−1)α/(°)初始转速/
    (r∙min−1)
    特征长度值/mm
    灰岩正方体边长40.33.540100~500
    (正/反转)
    圆盘直径/厚度58.6/24.3
    圆柱直径/高33.78/73
    坡面特征
    岩石类型形状尺寸
    特征长度值/mm
    灰岩长方体长/宽/高700/500/150
    下载: 导出CSV
  • [1]

    俸锦福, 张俊红, 朱彬, 等. 边坡滚石运动轨迹分段循环算法[J]. 中国地质灾害与防治学报,2011,22(4):96 − 101. [FENG Jinfu, ZHANG Junhong, ZHU Bin, et al. Segmented loop algorithm of theoretical calculation of trajectory of rockfall[J]. The Chinese Journal of Geological Hazard and Control,2011,22(4):96 − 101. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2011.04.021

    [2]

    ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:103 − 113. doi: 10.1016/j.ijrmms.2012.05.029

    [3]

    贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质,2020,47(4):82 − 89. [HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology,2020,47(4):82 − 89. (in Chinese with English abstract)

    [4]

    章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011,30(6):1266 − 1273. [ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1266 − 1273. (in Chinese with English abstract)

    [5]

    李娟, 何亮, 荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)

    [6]

    孙敬辉, 石豫川. 重庆甑子岩崩塌落石动力学特征及危险性分区[J]. 中国地质灾害与防治学报,2019,30(3):6 − 11. [SUN Jinghui, SHI Yuchuan. Dynamics and hazard zoning of collapse and rockfall in Zengziyan, Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):6 − 11. (in Chinese with English abstract)

    [7]

    何思明, 吴永, 李新坡. 滚石冲击碰撞恢复系数研究[J]. 岩土力学,2009,30(3):623 − 627. [HE Siming, WU Yong, LI Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics,2009,30(3):623 − 627. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.03.008

    [8]

    何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价—以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报,2020,31(4):24 − 33. [HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rockmass based on rockfall: A case study of the Xuangou Collapse[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):24 − 33. (in Chinese with English abstract)

    [9]

    BOURRIER F, BERGER F, TARDIF P, et al. Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches[J]. Earth Surface Processes and Landforms,2012,37(6):656 − 665. doi: 10.1002/esp.3202

    [10]

    FERRARI F, GIANI G, APUANI T. Why can rockfall normal restitution coefficient be higher than one[J]. Rend Online Soc Geol It,2013,24:122 − 124.

    [11]

    SPADARI M, GIACOMINI A, BUZZI O, et al. In situ rockfall testing in new south Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49:84 − 93. doi: 10.1016/j.ijrmms.2011.11.013

    [12]

    JI Z M, CHEN Z J, NIU Q H, et al. Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts[J]. Landslides,2019,16(10):1939 − 1963. doi: 10.1007/s10346-019-01183-x

    [13]

    JI Z M, CHEN Z J, NIU Q H, et al. A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments[J]. Landslides,2021,18(4):1531 − 1553. doi: 10.1007/s10346-020-01556-7

    [14]

    姬中民, 唐一举, 伍法权, 等. 落石形状和尺寸对恢复系数影响的室内试验研究[J]. 岩土力学,2021,42(3):665 − 672. [JI Zhongmin, TANG Yiju, WU Faquan, et al. Laboratory investigation of the effect of rockfall shape and size on coefficient of restitution[J]. Rock and Soil Mechanics,2021,42(3):665 − 672. (in Chinese with English abstract)

    [15]

    GIANI G P, GIACOMINI A, MIGLIAZZA M, et al. Experimental and theoretical studies to improve rock fall analysis and protection work design[J]. Rock Mechanics and Rock Engineering,2004,37(5):369 − 389. doi: 10.1007/s00603-004-0027-2

    [16]

    ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering,2016,49(3):927 − 941. doi: 10.1007/s00603-015-0798-7

    [17]

    BUZZI O, GIACOMINI A, SPADARI M. Laboratory investigation on high values of restitution coefficients[J]. Rock Mechanics and Rock Engineering,2012,45(1):35 − 43. doi: 10.1007/s00603-011-0183-0

    [18]

    GIACOMINI A, THOENI K, LAMBERT C, et al. Experimental study on rockfall drapery systems for open pit highwalls[J]. International Journal of Rock Mechanics and Mining Sciences,2012,56:171 − 181. doi: 10.1016/j.ijrmms.2012.07.030

    [19]

    HEIDENREICH B. Small- and half scale experimental studies of rockfall impacts on sandy slopes [D]. Lausanne: Swiss Federal Institute of Technology Lausanne, 2004.

    [20]

    WYLLIE D C. Calibration of rock fall modeling parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2014,67:170 − 180. doi: 10.1016/j.ijrmms.2013.10.002

    [21]

    ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Rockfalls: influence of rock hardness on the trajectory of falling rock blocks[J]. Bulletin of the Geological Society of Greece,2013,47(4):1684 − 1693. doi: 10.12681/bgsg.11033

    [22]

    陈涛, 陈志坚, 孟子耀. 基于Trajec 3D的硬岩人工路堑边坡滚石运动范围预测[J]. 中国地质灾害与防治学报,2019,30(5):37 − 41. [CHEN Tao, CHEN Zhijian, MENG Ziyao. Movement prediction of falling boulders in artificial cutting slope of hard rock based on Trajec 3D[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):37 − 41. (in Chinese with English abstract)

    [23]

    ASTERIOU P, TSIAMBAOS G. Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:41 − 50. doi: 10.1016/j.ijrmms.2018.04.001

    [24]

    ANSARI M K, AHMAD M, SINGH R, et al. Correlation between Schmidt hardness and coefficient of restitution of rocks[J]. Journal of African Earth Sciences,2015,104:1 − 5. doi: 10.1016/j.jafrearsci.2015.01.005

    [25]

    FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks[J]. Engineering Geology,2013,162:43 − 52. doi: 10.1016/j.enggeo.2013.05.007

    [26]

    MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc, 1994.

  • 加载中

(13)

(1)

计量
  • 文章访问数:  1510
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2021-04-01
修回日期:  2021-05-09
刊出日期:  2022-04-25

目录