中国地质环境监测院
中国地质灾害防治工程行业协会
主办

安宁河流域典型沟谷泥石流危险性评价

王子亮, 常鸣, 刘沛源, 徐璐. 安宁河流域典型沟谷泥石流危险性评价——以冷渍沟为例[J]. 中国地质灾害与防治学报, 2022, 33(3): 31-38. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-04
引用本文: 王子亮, 常鸣, 刘沛源, 徐璐. 安宁河流域典型沟谷泥石流危险性评价——以冷渍沟为例[J]. 中国地质灾害与防治学报, 2022, 33(3): 31-38. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-04
WANG Ziliang, CHANG Ming, LIU Peiyuan, XU Lu. Hazard assessment of typical gully debris flow in Anning river:A case study at the Lengzi gully[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 31-38. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-04
Citation: WANG Ziliang, CHANG Ming, LIU Peiyuan, XU Lu. Hazard assessment of typical gully debris flow in Anning river:A case study at the Lengzi gully[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 31-38. doi: 10.16031/j.cnki.issn.1003-8035.2022.03-04

安宁河流域典型沟谷泥石流危险性评价

  • 基金项目: 国家自然科学基金项目(U21A2032;42077245);第二次青藏高原综合科学考察研究资助(2019QZKK0902)
详细信息
    作者简介: 王子亮(1997-),男,山东淄博人,硕士研究生,主要从事工程地质与地质灾害防治方面的研究。E-mail:2019050256@stu.cdut.edu.cn
    通讯作者: 常 鸣(1985-),男,山东临沂人,博士,副教授,主要从事环境地质、地质灾害风险评价、遥感与GIS应用方面研究。E-mail:changmxq@126.com
  • 中图分类号: P642.23

Hazard assessment of typical gully debris flow in Anning river:A case study at the Lengzi gully

More Information
  • 冕宁县安宁河流域为地质灾害密集分布区,安宁河断裂穿越于此,构造复杂,冷渍沟在上游左岸发育。在强降雨条件下,该沟就会暴发泥石流,堵塞安宁河流域和掩埋杀叶马村房屋和道路。冷渍沟泥石流具有流域面积小,主沟长度短,沟床纵比降大等特征,为了研究安宁河流域内泥石流的危险性,以冷渍沟为例,分析不同降雨周期下的泥石流暴发强度,模拟泥石流的运动过程并进行危险性评价。模拟的最大流速、最大堆积深度和降雨强度三者结合建立冷渍沟泥石流危险性评价模型。研究结果表明,冷渍沟泥石流危险范围内高危险区域占27%,主要集中在松散固体物质较多的沟道,中危险性区域和低危险区域各占56%和17%,该结论为危险范围内的居民和重点设施的风险管控提供参考。

  • 加载中
  • 图 1  冷渍沟流域地理位置及构造纲要图

    Figure 1. 

    图 2  冷渍沟物源情况

    Figure 2. 

    图 3  冷渍沟流域平面示意图

    Figure 3. 

    图 4  冷渍沟清水流量过程线

    Figure 4. 

    图 5  冷渍沟泥石流模拟泥深图

    Figure 5. 

    图 6  冷渍沟泥石流模拟流速图

    Figure 6. 

    图 7  冷渍沟20年一遇模拟结果验证

    Figure 7. 

    图 8  冷渍沟泥石流危险性评价划分标准图

    Figure 8. 

    图 9  冷渍沟泥石流危险性评价图

    Figure 9. 

    表 1  FLO-2D手册建议的曼宁系数值

    Table 1.  Manning coefficient values suggested by the FLO-2D manual

    地表状况曼宁系数值地表状况曼宁系数值
    茂密草地0.17~0.8耕地0.0008~0.012
    植物茂密灌木草地0.17~0.48轮休耕地0.06~0.22
    杂林灌木、牧草地0.3~0.4传统耕地0.06~0.16
    一般草地植生0.2~0.4以整地农地0.3~0.5
    植物稀疏粗糙地0.2~0.3梯田0.07~0.17
    矮草原0.1~0.2无耕农作物0.17~0.47
    稀疏草原0.05~0.13有块石分布开阔地0.1~0.2
    有块石分布稀疏植被0.09~0.34沥青混凝土0.02~0.005
    下载: 导出CSV

    表 2  冷渍沟泥石流20年一遇参数选取

    Table 2.  The parameter of Lengzi gully under 20 years rainfall frequency

    流域面积F/m2沟道长度L/km屈服应力τy/MPa黏滞系数η层流阻力系数K曼宁系数nc
    0.62×1061.494903570422800.18
    放大系数BF径流深度H/cm汇流时间τ/h体积浓度/Cv洪峰流量Qp/(cm3·s−1洪水流量Wp/104 m3
    2.5261.60.611.57×1061.612
    下载: 导出CSV

    表 3  冲沟冷渍沟泥石流对比验证表

    Table 3.  Comparison and verification table of debris flow in Lengzi gully

    泥石流沟道名称设计频率 /%最大冲出长度/m最大冲出宽度/m冲出范围/(104 m2精度/%
    模拟实际模拟实际模拟实际重叠
    冷渍沟5.00207.00190.00147.00187.001.521.771.3286
    下载: 导出CSV

    表 4  研究区泥石流强度划分表

    Table 4.  Debris flow intensity division table in the study area

    危险等级最大堆积
    深度/m
    关系式最大堆积深度/m与
    最大流速/(m·s−1)乘积
    H≥2.5ORVH≥2.5
    0.5≤H<2.5AND0.5≤VH<2.5
    H<0.5ANDVH<0.5
    下载: 导出CSV
  • [1]

    中华人民共和国国土资源部. 泥石流灾害防治工程勘查规范: DZ/T 0220—2006[S]. 北京: 中国标准出版社, 2006

    Ministry of Land and Resources of the People's Republic of China. Specification of geological investigation for debris flow stabilization: DZ/T 0220—2006[S]. Beijing: Standards Press of China, 2006. (in Chinese)

    [2]

    倪化勇. 人工降雨条件下冲沟型泥石流起动试验研究[J]. 工程地质学报,2015,23(1):111 − 118. [NI Huayong. Field experiments for groove-type debris flow initiation with artificial rainfall[J]. Journal of Engineering Geology,2015,23(1):111 − 118. (in Chinese with English abstract)

    NI Huayong. Field experiments for groove-type debris flow initiation with artificial rainfall[J]. Journal of Engineering Geology, 2015, 23(1): 111-118. (in Chinese with English abstract)

    [3]

    李秀珍, 刘希林, 苏鹏程. 四川凉山州安宁河流域泥石流危险性评价[J]. 防灾减灾工程学报,2005,25(4):426 − 430. [LI Xiuzhen, LIU Xilin, SU Pengcheng. Assessment on regional debris flow hazardousness of Anning River valley in Liangshan prefecture, Sichuan[J]. Journal of Disaster Pnevention and Mitigation Engineering,2005,25(4):426 − 430. (in Chinese with English abstract)

    LI Xiuzhen, LIU Xilin, SU Pengcheng. Assessment on regional debris flow hazardousness of Anning River valley in Liangshan prefecture, Sichuan[J]. Journal of Disaster Pnevention and Mitigation Engineering, 2005, 25(4): 426-430. (in Chinese with English abstract)

    [4]

    BERTOLO P, WIECZOREK G F. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA[J]. Natural Hazards and Earth System Sciences,2005,5(6):993 − 1001. doi: 10.5194/nhess-5-993-2005

    [5]

    龚柯, 杨涛, 夏晨皓, 等. 基于FLO-2D的泥石流危险性评价:以四川省汶川县绵虒镇簇头沟为例[J]. 水资源与水工程学报,2017,28(6):134 − 138. [GONG Ke, YANG Tao, XIA Chenhao, et al. Assessment on the hazard of debris flow based on FLO-2D: A case study of debris flow in Cutou gully, Wenchuan, Sichuan[J]. Journal of Water Resources and Water Engineering,2017,28(6):134 − 138. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2017.06.23

    GONG Ke, YANG Tao, XIA Chenhao, et al. Assessment on the hazard of debris flow based on FLO-2D: a case study of debris flow in Cutou Gully, Wenchuan, Sichuan[J]. Journal of Water Resources and Water Engineering, 2017, 28(6): 134-138. (in Chinese with English abstract) doi: 10.11705/j.issn.1672-643X.2017.06.23

    [6]

    CHRISTEN M, KOWALSKI J, BARTELT P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain[J]. Cold Regions Science and Technology,2010,63(1/2):1 − 14.

    [7]

    NOCENTINI M, TOFANI V, GIGLI G, et al. Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy)[J]. Landslides,2015,12(5):831 − 846. doi: 10.1007/s10346-014-0524-7

    [8]

    QUAN L B, BLAHUT J, VAN W C J, et al. The application of numerical debris flow modelling for the generation of physical vulnerability curves[J]. Natural Hazards and Earth System Science,2011,138(11):2047 − 2060.

    [9]

    余宏明, 袁宏成, 唐辉明. 巴东县新城区冲沟泥石流危险度评价[J]. 水文地质工程地质, 2003, 30(增刊1): 47 − 49

    YU Hongming, YUAN Hongcheng, TANG Huiming. Fuzzy comprehendsive evaluation method to evaluate debris flow risk factor in Badong new city[J]. Hydrogeology & Engineering Geology, 2003, 30(Sup 1): 47 − 49. (in Chinese with English abstract)

    [10]

    詹钱登, 萧凯文, 徐郁超, 等. 应用 FLO-2D及 Debris 2D模拟羌黄坑集水区内土石流流动特性差异之研究[J]. 中华防灾学刊,2015,7(2):239 − 247. [ZHAN Qiandeng, XIAO Kaiwen, XU Yuchao, et al. Study on the difference of flow characteristics of soil-rock flow in Qianghuangkeng catchment area by using FLO-2D and Debris 2D[J]. Chinese Journal of Disaster Prevention,2015,7(2):239 − 247. (in Chinese with English abstract)

    ZHAN Qiandeng, XIAO Kaiwen, XU Yuchao, et. al. , Study on the difference of flow characteristics of soil-rock flow in Qianghuangkeng catchment area by using FLO-2D and Debris 2D[J]. Chinese Journal of Disaster Prevention. 2015, 7(2): 239-247. ( in Chinese with English abstract

    [11]

    曹鹏, 侯圣山, 陈亮, 等. 基于数值模拟的群发性泥石流危险性评价:以甘肃岷县麻路河流域为例[J]. 中国地质灾害与防治学报,2021,32(2):100 − 109. [CAO Peng, HOU Shengshan, CHEN Liang, et al. Risk assessment of mass debris flow based on numerical simulation: An example from the Malu River Basin in Min County[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):100 − 109. (in Chinese with English abstract)

    CAO Peng, HOU Shengshan, CHEN Liang, et al. Risk assessment of mass debris flow based on numerical simulation: an example from the Malu River Basin in Min County[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 100-109. (in Chinese with English abstract)

    [12]

    唐川, 李为乐, 丁军, 等. 汶川震区映秀镇“8·14”特大泥石流灾害调查[J]. 地球科学,2011,36(1):172 − 180. [TANG Chuan, LI Weile, DING Jun, et al. Field investigation and research on giant debris flow on August 14, 2010 in Yingxiu Town, epicenter of Wenchuan earthquake[J]. Earth Science,2011,36(1):172 − 180. (in Chinese with English abstract)

    TANG Chuan, LI Weile, DING Jun, et al. Field investigation and research on giant debris flow on August 14, 2010 in yingxiu town, epicenter of Wenchuan earthquake[J]. Earth Science, 2011, 36(1): 172-180. (in Chinese with English abstract)

    [13]

    崔鹏, 邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展,2016,35(2):137 − 147. [CUI Peng, ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography,2016,35(2):137 − 147. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2016.02.001

    CUI Peng, ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography, 2016, 35(2): 137-147. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2016.02.001

    [14]

    牛全福, 陆铭, 李月锋, 等. 基于灰色关联与粗糙依赖度的甘肃兰州市区泥石流危险性评价[J]. 中国地质灾害与防治学报,2019,30(5):48 − 56. [NIU Quanfu, LU Ming, LI Yuefeng, et al. Hazard assessment of debris flow in Lanzhou City of Gansu Province based on methods of grey relation and rough dependence[J]. The Chinese Journal of Geological Hazard and Control,2019,30(5):48 − 56. (in Chinese with English abstract)

    NIU Quanfu, LU Ming, LI Yuefeng, et al. Hazard assessment of debris flow in Lanzhou City of Gansu Province based on methods of grey relation and rough dependence[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5): 48-56. (in Chinese with English abstract)

    [15]

    常鸣, 唐川. 基于水动力的典型矿山泥石流运动模式研究[J]. 水利学报,2014,45(11):1318 − 1326. [CHANG Ming, TANG Chuan. Study on typical movement model in mine debris flow based on hydrodynamic force conditions[J]. Journal of Hydraulic Engineering,2014,45(11):1318 − 1326. (in Chinese with English abstract)

    CHANG Ming, TANG Chuan. Study on typical movement model in mine debris flow based on hydrodynamic force conditions[J]. Journal of Hydraulic Engineering, 2014, 45(11): 1318-1326. (in Chinese with English abstract)

    [16]

    林文, 周伟, 李靖, 等. 基于Flow-R和FLO-2D耦合模型的沟谷型泥石流危险性评价[J/OL]. 人民长江: 1 − 9

    LIN Wen, ZHOU Wei, LI Jing, et al. Debris flow hazard assessment based on combination of Flow-R and FLO-2D models[J/OL]. Yangtze River: 1 − 9. https://kns.cnki.net/kcms/detail/detail.aspx?bcode=CAPJ&dbname=CAPJLAST&filename=RIVE20211008000&uniplatform=NZKPT&v=HFdcQQN9Fr2BnwrB79d72ZrNvTI4uEHW_decSY9iPILe_gw9fCRwPOFDhHUORNjy (in Chinese with English abstract)

    [17]

    陈兴长, 游勇, 陈晓清, 等. 安宁河上游冷渍沟泥石流特征及其发展趋势[J]. 长江流域资源与环境,2012,21(1):122 − 128. [CHEN Xingzhang, YOU Yong, CHEN Xiaoqing, et al. Characteristics and development trends of debris flows of lengzi gully in the upper Anning River, southwest Sichuan, China[J]. Resources and Environment in the Yangtze Basin,2012,21(1):122 − 128. (in Chinese with English abstract)

    CHEN Xingzhang, YOU Yong, CHEN Xiaoqing, LIU Jinfeng, HUANG Kai ], YOU Yong, CHEN Xiaoqing, et al. Characteristics and development trends of debris flows of lengzi gully in the upper Anning River, southwest Sichuan, China[J]. Resources and Environment in the Yangtze Basin, 2012, 21(1): 122-128. (in Chinese with English abstract)

    [18]

    ADEGBE M, ALKEMA D, JETTEN V G, et al. Post seismic debris flow modelling using FLO-2D: Case study of Yingxiu, Sichuan Province, China[J]. Journal of Geography and Geology,2013,5(3):101 − 115.

    [19]

    O’BRIEN J S, JULIEN P Y. Physical properties and mechanics of hyperconcentrated sediment flows[J]. Flash Floods and Debris Flow Hazards in Utah,1985:260 − 279.

    [20]

    四川省水电局. 四川省水文手册[M]. 四川省水利电力局水文总站图书出版社, 1984

    Sichuan Provincial Hydropower Bureau. Sichuan province hydrology manual[M]. Sichuan Provincial Water Resources and Electric Power Bureau Hydrology Station Book Press, 1984. (in Chinese)

    [21]

    PENG S H, LU S C. FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern Taiwan during Typhoon Morakot[J]. Journal of Mountain Science,2013,10(2):207 − 218. doi: 10.1007/s11629-013-2510-2

    [22]

    常鸣, 窦向阳, 唐川, 等. 降雨驱动泥石流危险性评价[J]. 地球科学,2019,44(8):2794 − 2802. [CHANG Ming, DOU Xiangyang, TANG Chuan, et al. Hazard assessment of typical debris flow induced by rainfall intensity[J]. Earth Science,2019,44(8):2794 − 2802. (in Chinese with English abstract)

    CHANG Ming, DOU Xiangyang, TANG Chuan, et al. Hazard assessment of typical debris flow induced by rainfall intensity[J]. Earth Science, 2019, 44(8): 2794-2802. (in Chinese with English abstract)

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1705
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2022-01-03
修回日期:  2022-03-30
录用日期:  2022-04-06
刊出日期:  2022-06-25

目录