-
摘要:
矿渣在沟谷的堆积形态、压占比例影响其在特定降雨概率下的稳定性。文中以豫西某金矿2条主沟16个渣堆为研究对象,提出在不同降雨概率雨力条件下单个渣堆稳定性计算方法。即近10年来最大观测雨强、25年一遇(P=4%)雨强、50年一遇雨强(P=2%)、100年一遇雨强(P=1%)条件下的启动流速(Uc)以及泄洪流速(Us),令稳定系数Fs=Uc/Us,计算出渣堆的稳定系数,研究成果对于不同特定雨力工况下渣堆的危险性评价及分类防治有一定意义。
Abstract:The slag accumulation form and the proportion of slag in the valley affect its stability under a specific rainfall probability. This paper takes 16 slag piles in two main trenches of a gold mine in western Henan as the research object and proposes a calculation method for the stability of a single slag pile under different rainfall probability conditions. That is, the start-up under the conditions of maximum observed rain intensity in recent years,rain intensity once in 25 years (P=4%), rain intensity once in 50 years (P=2%), and rain intensity once in 100 years (P=1%). The flow rate and the flow rate of the flood discharge, the ratio of which is calculated to analyze the stability of the slag pile. The research results have certain significance for the risk assessment of specific slag piles and the classification and prevention of slag piles.
-
Key words:
- debris flow /
- mine debris /
- flood discharge flow rate /
- startup flow rate /
- flood peak
-
表 1 豫西某金矿渣堆体积及压占沟谷比例统计表
Table 1. Statistical table of volume and proportion of the slag in a gold slag pile in western Henan
矿渣 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 体积/(104 m3) 1.2 0.09 0.12 0.07 0.14 0.5 0.05 1.4 压占沟谷比例/% 50 43 83 69 72 71 74 48 矿渣 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 体积/(104 m3) 2 2.5 1.2 0.29 0.4 0.3 0.25 1.54 压占沟谷比例/% 74 55 77 71 60 67 49 88 表 2 渣堆泄洪流速Us计算参数测量结果表
Table 2. The measurement result of calculation parameters of flood discharge velocity of the slag pile
渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 F/km2 0.176 0.176 0.27 0.27 0.469 0.469 0.616 0.176 L/km 0.47 0.47 0.61 0.61 0.72 0.79 0.79 1.01 I/‰ 462 462 418 418 387 373 373 314 h/m 2 2 2.5 2.5 2.5 2 2 2 b/m 1.5 3.5 2.5 3.35 3.05 11 11.5 1.5 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 F/km2 0.85 1.68 1.82 1.82 0.232 0.283 0.431 0.511 L/km 1.52 1.52 1.66 0.52 0.66 0.84 0.97 1.13 I/‰ 283 283 269 514 456 400 374 332 h/m 2.5 2 2 2 2.5 2.5 2 2 b/m 2.7 9.5 26.5 18.5 4.35 2 4.5 4 表 3 渣堆启动流速(Uc)计算参数测量结果表
Table 3. The measurement result of calculation parameters of startup flow rate of the slag pile
渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 α/(°) 14 14 9 10.84 14.16 10.45 6.76 6 φ/(°) 34 32 20 22 41 23 18 33 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 α/(°) 7 4 4 12.84 12.95 8.38 11.14 6 φ/(°) 30 34 29 30 33 24 17 29 表 4 不同雨力工况下渣堆稳定性计算结果表
Table 4. The calculation result of slag pile stability under different rain conditions
近10 a最大值计算
结果(49 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.90 2.11 1.40 1.85 0.90 2.76 2.26 0.51 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.72 1.88 1.33 2.64 1.01 1.25 0.95 0.68 25 a一遇计算
结果(60 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.72 1.70 1.12 1.49 0.72 2.22 1.81 0.41 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.58 1.51 1.07 2.12 0.81 1.00 0.76 0.54 50 a一遇计算
结果(80 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.53 1.25 0.83 1.09 0.53 1.63 1.33 0.30 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.42 1.11 0.79 1.56 0.60 0.74 0.56 0.40 100 a一遇计算
结果(90 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.47 1.10 0.73 0.96 0.47 1.44 1.18 0.26 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.37 0.98 0.69 1.38 0.53 0.65 0.49 0.35 表 5 不同雨力下渣堆危险性以及稳定性系数
Table 5. Ranking table of slag pile stability under different rain conditions
渣堆
编号ZD
8ZD
16ZD
9ZD
1ZD
5ZD
15ZD
13ZD
14ZD
11ZD
3ZD
4ZD
10ZD
2ZD
7ZD
12ZD
649 mm/h Fs 0.51 0.68 0.72 0.90 0.90 0.95 1.01 1.25 1.33 1.40 1.85 1.88 2.11 2.26 2.64 2.76 60 mm/h Fs 0.41 0.54 0.58 0.72 0.72 0.76 0.81 1.00 1.07 1.12 1.49 1.51 1.70 1.81 2.12 2.22 80 mm/h Fs 0.30 0.40 0.42 0.53 0.53 0.56 0.60 0.74 0.79 0.83 1.09 1.11 1.25 1.33 1.56 1.63 90 mm/h Fs 0.26 0.35 0.37 0.47 0.47 0.49 0.53 0.65 0.69 0.73 0.96 0.98 1.10 1.18 1.38 1.44 表 6 不同雨力工况下渣堆稳定性修正计算结果表
Table 6. The calculation result of slag pile stability correction under different rain conditions
近10年最大观测雨强
修正结果(49 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.90 1.41 1.01 1.33 0.70 2.26 1.80 0.43 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.62 1.48 1.12 2.64 1.01 1.25 0.95 0.62 25年一遇雨强修正
结果(60 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.72 1.13 0.81 1.06 0.56 1.70 1.44 0.34 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.47 1.22 0.87 2.12 0.81 0.84 0.63 0.45 50年一遇雨强修正
结果(80 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.53 0.83 0.59 0.78 0.41 1.24 1.05 0.25 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.35 0.88 0.62 1.56 0.60 0.62 0.46 0.33 100年一遇雨强修正
结果(90 mm/h)渣堆编号 ZD1 ZD2 ZD3 ZD4 ZD5 ZD6 ZD7 ZD8 Fs 0.47 0.73 0.52 0.68 0.36 1.10 0.93 0.22 渣堆编号 ZD9 ZD10 ZD11 ZD12 ZD13 ZD14 ZD15 ZD16 Fs 0.31 0.78 0.55 1.38 0.53 0.54 0.41 0.29 表 7 修正后不同雨力下渣堆危险性以及稳定性系数
Table 7. Ranking table of slag pile stability under different rain conditions after correction
49 mm/h 渣堆编号 ZD
8ZD
9ZD
16ZD
5ZD
1ZD
15ZD
3ZD
13ZD
11ZD
14ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.43 0.62 0.62 0.70 0.90 0.95 1.01 1.01 1.12 1.25 1.33 1.41 1.48 1.80 2.26 2.64 60 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
14ZD
11ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.34 0.45 0.47 0.56 0.63 0.72 0.81 0.81 0.84 0.87 1.06 1.13 1.22 1.44 1.70 2.12 80 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
11ZD
14ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.25 0.33 0.35 0.41 0.46 0.53 0.59 0.60 0.62 0.62 0.78 0.83 0.88 1.05 1.24 1.56 90 mm/h 渣堆编号 ZD
8ZD
16ZD
9ZD
5ZD
15ZD
1ZD
3ZD
13ZD
14ZD
11ZD
4ZD
2ZD
10ZD
7ZD
6ZD
12Fs 0.22 0.29 0.31 0.36 0.41 0.47 0.52 0.53 0.54 0.55 0.68 0.73 0.78 0.93 1.10 1.38 -
[1] 徐友宁,陈华清,杨敏,等. 采矿废渣颗粒粒径对矿渣型泥石流起动的控制作用—以小秦岭金矿区为例[J]. 地质通报,2015,34(11):1993 − 2000. [XU Youning,CHEN Huaqing,YANG Min,et al. Controlling role of particle sizes of mining waste residues in the initiation of mine debris flow:A case study of the Xiaoqinling gold mining area[J]. Geological Bulletin of China,2015,34(11):1993 − 2000. (in Chinese with English abstract)
[2] 徐友宁,何芳,张江华,等. 矿山泥石流特点及其防灾减灾对策[J]. 山地学报,2010,28(4):463 − 469. [XU Youning,HE Fang,ZHANG Jianghua,et al. Characteristics of mine debris flow and its disaster prevention and mitigation countermeasures[J]. Journal of Mountain Science,2010,28(4):463 − 469. (in Chinese with English abstract)
[3] 徐友宁,何芳,陈华清. 西北地区矿山泥石流及分布特征[J]. 山地学报,2007,25(6):729 − 736. [XU Youning,HE Fang,CHEN Huaqing. Mine debris flow and its distribution in Northwestern China[J]. Journal of Mountain Science,2007,25(6):729 − 736. (in Chinese with English abstract)
[4] 陈华清. 小秦岭金矿区“7·23”泥石流形成特征及其启示[C]//第八届海峡两岸山地灾害与环境保育学术研讨会论文集. 中国水土保持学会、台湾中华水土保持学会、中国水土保持学会泥石流滑坡防治专业委员会, 2011.
CHEN Huaqing. Formation characteristics and enlightenment of "7·23" debris flow in Xiaoqinling gold mining area[C]//Proceedings of the 8th Cross-Strait Mountain Disaster and Environmental Conservation Symposium. Chinese Society of Soil and Water Conservation, Chinese Society of Soil and Water Conservation in Taiwan, Professional Committee of Debris Flow and Landslide Prevention of Chinese Society of Soil and Water Conservation, 2011. (in Chinese with English abstract)
[5] 徐友宁,陈华清,张江华,等. 小秦岭金矿区 7·23蒿岔峪泥石流成灾模式及启示[J]. 地质通报,2015,34(11):2001 − 2008. [XU Youning,CHEN Huaqing,ZHANG Jianghua,et al. Hazard mode of the 7·23 mine debris flow in the Xiaoqinling gold mine area[J]. Geological Bulletin of China,2015,34(11):2001 − 2008. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2015.11.002
[6] 徐友宁. 影响小秦岭金矿区矿山泥石流形成的物源特征分析[C]// 第八届海峡两岸山地灾害与环境保育学术研讨会论文集. 中国水土保持学会、台湾中华水土保持学会、中国水土保持学会泥石流滑坡防治专业委员会, 2011
XU Youning. Analysis of Provenance Characteristics Affecting the Formation of Mine Debris Flow in Xiaoqinling Gold Mine Area[C]//Proceedings of the 8th Cross-Strait Mountain Disaster and Environmental Conservation Symposium. Chinese Society of Soil and Water Conservation, Chinese Society of Soil and Water Conservation in Taiwan, Professional Committee of Debris Flow and Landslide Prevention of Chinese Society of Soil and Water Conservation, 2011. (in Chinese with English abstract)
[7] 何芳,徐友宁,乔冈,等. 中国矿山地质灾害分布特征[J]. 地质通报,2012,31(增刊 1):476 − 485. [HE Fang,XU Youning,QIAO Gang,et al. Distribution characteristics of mine geological hazards in China[J]. Geological Bulletin of China,2012,31(Sup 1):476 − 485. (in Chinese with English abstract)
[8] 邓龙胜,范文,熊炜,等. 矿渣型泥石流发育特征及危险性评价[J]. 工程地质学报,2009,17(3):415 − 420. [DENG Longsheng,FAN Wen,XIONG Wei,et al. Development features and risk of inducing slag debris flow at Daxicha gully[J]. Journal of Engineering Geology,2009,17(3):415 − 420. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.03.022
[9] 李荣,李义天,王迎春. 非均匀沙起动规律研究[J]. 泥沙研究,1999(1):27 − 32. [LI Rong,LI Yitian,WANG Yingchun. Study of non-uniform sand starting law[J]. Journal of Sediment research,1999(1):27 − 32. (in Chinese with English abstract) doi: 10.16239/j.cnki.0468-155x.1999.01.005
[10] 陈嫒儿, 谢鉴衡. 非均匀沙起动规律初探[J]. 武汉水利电力学院学报,1988,21(3):28 − 37. [CHEN Yuaner, XIE Jianheng. Preliminary research on the laws of threshold motion for non-uniform sediments[J]. Journal of Wuhan University of Hydraulic and Electric Engineering,1988,21(3):28 − 37. (in Chinese with English abstract)
[11] 谢鉴衡. 河流泥沙动力学[M]. 北京: 中国水利水电出版社, 1989: 63 − 84
XIE Jianheng. River sediment dynamics[M]. Beijing: China Water Conservancy and Hydropower Press, 1989: 63 − 84. (in Chinese)
[12] 秦荣昱. 不均匀砂的启动规律[J]. 泥沙研究, 1980(复刊号): 83 − 91
QIN Rongyu. Startup rule of uneven sand[J]. Sediment Research, 1980(Reissue number): 83 − 91. (in Chinese)
[13] 彭润译, 吕秀贞. 长江寸滩站卵石推移质输沙规律[J]. 水利学报, 1990, 21(1): 38 − 43
PENG Runyi, LYU Xiuzhen. The law of bedding and sediment transport of pebble at Cuntan station of the Yangtze River[J]. Journal of Hydraulic Engineering. 1990, 21(1): 38 − 43.(in Chinese)
[14] 林玫玲,简文彬,胡海瑞,等. 基于离散元的矿渣泥石流运动过程研究[J]. 中国地质灾害与防治学报,2017,28(2):10 − 14. [LIN Meiling,JIAN Wenbin,HU Hairui,et al. The movement process of slag debris flow based on the discrete element method[J]. The Chinese Journal of Geological Hazard and Control,2017,28(2):10 − 14. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2017.02.02
[15] 李建林,张洪云,李振林. 矿山泥石流沟谷形态的分形分维[J]. 中国地质灾害与防治学报,2012,23(1):1 − 5. [LI Jianlin,ZHANG Hongyun,LI Zhenlin. Fractal analysis on morphology of mine debris flow gully[J]. The Chinese Journal of Geological Hazard and Control,2012,23(1):1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2012.01.001
[16] 唐亚明,武立,冯凡,等. 泥石流风险减缓措施及经济决策—以山西吉县城北沟为例[J]. 西北地质,2021,54(4):227 − 238. [TANG Yaming,WU Li,FENG Fan,et al. Risk mitigation measures and economic decisions on debris flow:Taking Beigou of Jixian County,Shanxi Province as an example[J]. Northwestern Geology,2021,54(4):227 − 238. (in Chinese with English abstract) doi: 10.19751/j.cnki.61-1149/p.2021.04.018
[17] 杨敏, 徐友宁. 小秦岭金矿区矿渣泥石流成因机理及防治对策[M]. 北京: 冶金工业出版社, 2021
YANG Min, XU Youning. Genesis mechanism and prevention countermeasures of slag and debris flow in Xiaoqinling gold mine area[M]. Beijing: Metallurgical Industry Press, 2021. (in Chinese)
[18] 徐友宁,陈社斌,李育敬,等. 陕西潼关金矿区泥石流潜势度评价[J]. 水文地质工程地质,2006,33(2):89 − 92. [XU Youning,CHEN Shebin,LI Yujing,et al. Potentiality degree assessment of slag mudslide geo-hazard on the gold mine area in Tongguan, Shaanxi Province[J]. Hydrogeology & Engineering Geology,2006,33(2):89 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.02.021
[19] 高东光. 桥涵水文[M]. 北京: 人民交通出版社, 2005: 76 − 87
GAO Dongguang. Hydrology and hydraulics for bridge engineering[M]. Beijing: China Communications Press, 2005: 76 − 87. (in Chinese)
[20] 燕建设,王铭生,杨建朝,等. 豫西马超营断裂带的构造演化及其与金等成矿的关系[J]. 中国区域地质,2000,19(2):166 − 171. [YAN Jianshe,WANG Mingsheng,YANG Jianchao,et al. Tectonic evolution of the Machaoying fault zone in western Henan and its relationship with Au polymetallic mineralization[J]. The Regional Geology of China,2000,19(2):166 − 171. (in Chinese with English abstract)
[21] 中国科学院水利部成都山地灾害与环境研究所. 中国泥石流[M]. 北京: 商务印书馆, 2000
Institute of Mountain Hazards and Environment, CAS. China debris flow[M]. Beijing: The Ommercial Press, 2000. (in Chinese)
[22] 常士骠, 张苏民. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018: 691
CHANG Shibiao, ZHANG Sumin. Geological engineering handbook(The fifth edition)[M]. Beijing: China Architecture & Building Press, 2018: 691. (in Chinese)