HEAT FLOW IN-SITU MEASUREMENT AT YAP TRENCH OF THE WESTERN PACIFIC
-
摘要: 为了解西太平洋雅浦海沟区俯冲带及岛弧两侧的海底热流分布情况,2015年1-3月期间的西太平洋海山航次中,"科学"号利用最新一代Lister型热流探针对该区域开展了海底热流原位测量工作。沿着横跨俯冲带的站位测线,本次进行了10个热流站位测量,共获得8个站位的有效数据。测量结果表明,该地区地温梯度的变化范围为0.011~0.137 Km-1,平均0.089 Km-1,热导率的变化范围为0.58~1.32 Wm-1K-1,热流值则在14.4~118.85 mWm-2之间,平均为68.02 mWm-2。热流值分布显示,雅浦岛弧附近具有较高的热流值,自雅浦岛弧向两侧热流值逐渐降低,低热流区主要分布在帕里西维拉海盆。由于该地区热流测量数据依然稀缺,深入的讨论有待进一步研究。Abstract: To investigate the geothermal distribution on the two sides of the subduction zone along the Yap trench-arc system in the Western Pacific, the latest Lister heat flow probe was employed for in-situ measurement of heat flow aboard the "kexue" research vessel during the Haishan cruises to this area from January to March, 2015. A total of ten heat flow points was measured across the subduction zone of Yap trench. However, only eight effective data were successfully obtained. The results show that the geothermal gradient of this area ranges from 0.011 Km-1 to 0.137 Km-1, with an average of 0.089 Km-1, the thermal conductivity ranges from 0.58 Wm-1K-1 to 1.32 Wm-1K-1, and value of heat flow ranges from 14.4 mWm-2 to 118.85 mWm-2, with an average of 68.02 mWm-2. The geothermal distribution indicates that values of heat flow in the area are really quite high. Low heat flow is found in the Parece Vela ocean basin. There is a distribution tendency that the heat flow gradually reduces from the axis of Yap arc to either side. Due to the heat flow data for the region is still scarce, more scientific problems will be further researched.
-
Key words:
- Yap trench /
- heat flow probe /
- heat flow value /
- the western Pacific
-
[1] 李官保,裴彦良,刘保华.海底热流探测技术综述[J].地球物理学进展,2005,20(3):611-619.
[LI Guanbao, PEI Yanliang,LIU Baohua.Review of measurement techniques of seafloor heat flow[J].Progress in Geophysics,2005,20(3):611-619.]
[2] Horai K,Von Herzen R P.Measurement of heat flow on leg 86 of the Deep Sea Drilling Project[J].Proc.DSDP Init Repts,1985,86:759-777.
[3] Davis E E,Villinger H,McDonald R D,et al. A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes[J].Mar. Geophys Res.,1997,19:267-281.
[4] 许薇龄,焦荣昌,乐俊英,等.东海陆架区地热研究[J].地球物理学进展,1995,10(2):32-38.
[XU WeiLing,JIAO Rongehang,YUE Junying,et al.Geothermal study on the continent shelf of the east China Sea[J].Progress in Geophysics,1995,10(2):32-38.]
[5] 栾锡武,张训华.东海及琉球沟弧盆系的海底热流测量与热流分布[J].地球物理学进展,2003,18(4):670-678.
[LUAN Xiwu,ZHANG Xunhua.Heat flow measurement and distribution of East China Sea and Ryukyu Trench Arc Back-Arc system[J].Progress in Geophysics,2003,18(4):670-678.]
[6] Toshiya Fujiwara,Chiori Tamura,Azusa Nishizawa,et al.Morphology and tectonics of the Yap Trench[J].Marine Geophysical Researches,2000,21:69-86.
[7] Kazuo Kobayashi.Origin of the Palau and Yap trench-arc systems[J].Geophys. J. Int. 2004,157:1303-1315.
[8] Hyndman R D,Davis E E,Wright J A.The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and in situ thermal conductivity[J]. Mar.Geophys.Res.,1979,4:181-205.
[9] Turcotte D L,Schubert G.Geodynamics:Applications of Continuum Physics to Geological Problems[M].John Wiley &Sons (1stedition),1982:134-137.
[10] Bullard E C.The flow of heat through the floor of the Atlantic Ocean[J]. Proc. R. Soc. London, A,1954,222:408-425.
[11] Lister C R B.Measurement of in situ sediment conductivity by means of a Bullard-type probe[J].Geophys J R.Astr.Soc,1970,19:521-532.
[12] Lister C R B.The pulse-probe method of conductivity measurement[J].Geophys J.R.Astr.Soc,1979,57:451-461.
[13] Carslaw H S,Jaeger J C.Conduction of Heat in Solids[M].Oxford University Press,1959.
[14] Hartmann A,Villinger H.Inversion of marine heat flow measurements by expansion of the temperature decay function[J].Geophysical Journal International,2002,148(3):628-636.
[15] Nagihara S,Kinoshita M,Fujimoto H,et al.Geophysical observations around the northern Yap Trench:seismicity,gravity and heat flow[J].Tectonophysics,1989,163(89):93-104.
[16] Iwamori H.Importance of compression melting in subduction zones[J]. Proc.Japan Acad. Ser. 1996,B72:168-173.
[17] Fujioka K,Furuta T,Kimura G,et al.Sediments and rocks in and around the Palau and Yap trenches,Preliminary Rep. of Hakuho-maru Cruise KH86-1[C].Ocean Res,Inst, Unit.Tokyo,1986,38-148.
[18] Fujiwara T,Tamura C,Nishizawa A,et al.Morphology and tectonics of the Yap Trench[J].Marine Geophysical Researches,2000,21(1-2):69-86.
期刊类型引用(8)
1. Jiaohong NIU,Chengjun SUN,Bo YANG,Lei XIE,Fenghua JIANG,Wei CAO,Yan CHEN,Haibing DING,Yuhuan HUANG,Xianchi GAO. Vertical variations and composition of dissolved free amino acid in the seawater of the Yap Trench in the western Pacific Ocean. Journal of Oceanology and Limnology. 2023(01): 118-137 . 必应学术
2. 韩潇,付永涛. 雅浦俯冲带北段地球物理场及构造活动性分析. 海洋科学进展. 2022(03): 449-460 . 百度学术
3. HUANG Yuhuan,SUN Chengjun,YANG Guipeng,YUE Xin'an,JIANG Fenghua,CAO Wei,YIN Xiaofei,GUO Chaonan,NIU Jiaohong,DING Haibing. Geochemical characteristics of hadal sediment in the northern Yap Trench. Journal of Oceanology and Limnology. 2020(03): 650-664 . 必应学术
4. 岳新安,闫艺心,丁海兵,孙承君,杨桂朋. 雅浦海沟沉积物的生物地球化学特征及其海洋学意义. 中国海洋大学学报(自然科学版). 2018(03): 88-96 . 百度学术
5. 吴彬,李栋,赵军,刘诚刚,孙承君,陈建芳,潘建明,韩正兵,胡佶. 沉积环境对雅浦海沟沉积颗粒物组成和分布的影响. 海洋学报. 2018(10): 167-179 . 百度学术
6. 张梦洁,孙承君,杨桂朋,丁海兵. 西太平洋雅浦海沟区海水中CH_4和DMSP的垂直变化特征. 海洋学报. 2018(10): 143-157 . 百度学术
7. 孔祥超,李三忠,王永明,索艳慧,戴黎明,王鹏程,王倩,郭玲莉,朱俊江. 伊豆-小笠原-马里亚纳俯冲带地震成因. 海洋地质与第四纪地质. 2017(04): 83-97 . 本站查看
8. 肖春晖,王永红,林间. 海沟沉积物研究进展. 热带海洋学报. 2017(06): 27-38 . 百度学术
其他类型引用(4)
-
计量
- 文章访问数: 1409
- PDF下载数: 2
- 施引文献: 12