GEOCHEMISTRY OF RARE EARTH ELEMENTS IN A CORE FROM MARIANA TRENCH AND ITS SIGNIFICANCE
-
摘要: 对我国载人潜器"蛟龙号"首次在马里亚纳海沟南部获取的沉积物柱状样(JL7KGC01A)进行了涂片观察、粒度、黏土矿物和稀土元素组成分析。结果表明:沉积物为典型深海黏土沉积。根据沉积物的粒度、黏土组分和稀土元素含量变化以及不同程度的δCe和δEu异常将该沉积物柱状剖面分为明显的上下两个沉积层段,即:1.8~2.41 m段与0.03~1.8 m两个层段。下部层段(1.8~2.41 m)相比上部层段(0.03~1.8 m),沉积物平均粒径较粗,蒙脱石/伊利石比值较高,稀土元素含量低且具有弱的Ce负异常和Eu正异常,表明该段沉积物受到较多的火山物质的影响。结合年代学分析认为研究区沉积物在2.2 Ma发生明显转变,2.2 Ma之前沉积物物源以附近火山物质为主,2.2 Ma之后物源仍以火山物质为主,但陆源物质供应逐渐增加。物源的转变暗示着本区在2.2 Ma之前火山活动较为频繁。Abstract: The lithology, grain-size, clay minerals and rare earth elements (REE) of sediments from the core named JL7KGC01A, collected by "JiaoLongHao" from the Pacific Ocean, south of the Mariana Trench, are analyzed for the first time. The results show that the sample is a sort of typical pelagic clay. According to its granularity, clay minerals, REE contents, δCe and δEu values, the core can be divided to lower(1.8-2.41 m) and upper sections(0.03-1.8 m). Sediments from the lower section are coarser in grain-size, with higher M/I value (montmorillonite/illite), lower REE value, slightly negative Ce and Eu anomalies compared to the upper section, indicating that the lower section hosts more volcanic materials. According to the mineralogy, REE geochemistry and chronological data in hand, we believe that the sediments were mainly from nearby volcanic eruptives earlier than 2.2 Ma. However, the terrigenous materials played an increasingly important role in the sediments later than 2.2 Ma. The change in source of the sediments may indicate frequent volcanic activities in the Mariana before 2.2 Ma.
-
Key words:
- REE /
- sediments /
- source /
- Mariana Trench
-
[1] Arai S, Hirai H, Uto K. Mantle peridotite xenoliths from the Southwest Japan arc:a model for the sub-arc upper mantle structure and composition of the Western Pacific rim[J]. Journal of Mineralogical and Petrological Sciences, 2000, 95:9-23.
[2] Bloomer S H. Distribution and origin of igneous rock from the landward slope of the Mariana Trench, implications for its structure and evolution[J]. Journal of Geophysical Research Atmospheres, 1983, 88(B9):7411-7428.
[3] Bloomer S H, Hawkins J W. Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench[J]. Contrib Mineral Petrol, 1987, 97:361-377.
[4] 陈俊冰. 马里亚纳海沟南部橄榄岩的研究:地幔楔中含水流体-橄榄岩的相互作用[D]. 中国科学院研究生院, 2006.[CHEN Junbing. The study of peridotites from the southern Mariana forearc:the interactive effect of aqueous fluid from mantle-wedge and peridotite[D].Graduate school of Chinese Academy of Sciences, 2006.]
[5] Larson E E, Reynolds R L, Merrill R, et al. Major element petrochemistry of some extrusive rocks from the volcanically active Mariana islands[J]. Bulletin Volcanologique, 1975, 38:361-377.
[6] Meijer A. Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system[J]. Geological Society of America Bulletin, 1976, 87:1358-1369.
[7] Stern R J, Fouch M J, Klemperer SL. An overview of the Izu-Bonin-Mariana subduction factory[C]//Washington, DC:American Geophysical Union, 2004, 138:175-223.
[8] 汪小妹.马里亚纳前弧南部橄榄岩的地球化学研究[D]. 中国科学院研究生院, 2010.[WANG Xiaomei. Geochemistry study of peridotites from the southern Mariana forearc[D]. Graduate School of Chinese Academy of Sciences, 2010.]
[9] 吴世迎. 马里亚纳海槽海底热液烟囱和菲律宾海沉积物[M]. 海洋出版社,1991, 77-172.[WU Shiying. Submarine Hydrothermal Chimney in Mariana Trough and the Sediments in Philippine Sea[M]. Beijing Ocean Press, 1991, 77
-172.]
[10] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008,53:695-702.[XU Zhaokai, LI Anchun, JIANG Fuqing, et al.Geochenmical character and material source of sediments in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008
, 53:695-702.]
[11] Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene:potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2015, in press.
[12] Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[C]//Geophysical Monograph, 2003, 138:175-223.
[13] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 3:535-539.
[14] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[C]//Origin and distribution of the elements. Pergamon, Oxford, 1968,1:889-911.
[15] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296:214-219.
[16] 张富元,章伟艳,张霄宇,等.深海沉积物分类与命名[M].北京:海洋出版社, 2013, 39-44.[ZHANG Fuyuan, ZHANG Weiyan, ZHANG Xiaoyu, et al. The Sorts and Naming of Deep-sea Sediments[M]. Beijing:China Ocean Press. 2013, 39
-44.]
[17] 刘娜, 孟宪伟. 冲绳海槽中段表层沉积物稀土元素组成及物源指示意义[J]. 海洋地质与第四纪地质, 2004, 24(4):37-45.
[LIU Na, MENG Xianwei. Characteristics of rare earth elements in surface sediments from the middle Okinawa trough:implications for provenance of mixed sediments[J]. Marine Geology and Quaternary Geology, 2004, 24(4):37-45.]
[18] 刘宝林, 王亚平, 王吉中, 等.南海北部陆坡海洋沉积物稀土元素及物源和成岩环境[J]. 海洋地质与第四纪地质, 2004,24(4):17-23.
[LIU Baolin, WANG Yaping, WANG Jizhong, et al. Geochemical characters of REE in the sea floor sediment in Northern continental slope of the South China Sea and analysis of source of material and diagenesis environment[J]. Marine Geology and Quaternary Geology, 2004, 24(4):17-23.]
[19] 田丽艳, 赵广涛, 陈佐林, 等. 马里亚纳海槽热液活动区玄武岩的岩石地球化学特征[J]. 青岛海洋大学学报, 2003, 33(3):405-412
[TIAN Liyan, ZHAO Guangtao, CHEN Zuolin, et al. The preliminary study of petrological geochemistry of basalts from hydrothermal activity regions, Mariana Trough[J]. Joernal of Ocean University of Qingdao, 2003,33(3):405-412.]
[20] Migdisov A A, Miklishansky A Z, Saveliev B V, et al. Neutronactivation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays, Deep Sea Drilling Project Leg 59[C]//Washington:US Govt Printing Office, 1981. 653-668.
[21] 文启忠, 刁桂仪, 耿安松,等. 中国黄土地球化学[M]. 北京:地质出版社, 1989, 1-285.[WEN Qizhong, DIAO Guiyi, GENG Ansong, et al. Chinese Loess Geochemistry[M]. Beijing:Geological Publishing House, 1989,1
-285.]
[22] Sverjensky D A. Europium redox equilibriain aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67:70-78.
[23] 刘季花. 东太平洋沉积物稀土元素和Nd同位素地球化学特征及其环境指示意义[D]. 中国科学院研究生院, 2004.[LIU Jihua. The geochemistry of REEs and Nd isotope in deep-sea sediments from the eastern Pacific and their geological implications[D]. Graduate School of Chinese Academy of Sciences, 2004.]
[24] Sun Y, An Z. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research, Atmospheres, 2005, 110:D23101.
[25] Underwood, M B, Fergusson, C L. Late Cenozoic evolution of the Nankai trench-slope system:Evidence from sand petrography and clay mineralogy[J]. Geological Society, London, Special Publications, 2005, 244:113-129.
[26] Kazuhiro T, Yuji N, Akimasa M. Rare earth elements of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1990, 54:1093-1103.
[27] Pramod S, Rajamani. REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India:Implication to source area wreathing and sedimentary process[J]. Geochimica et Cosmochimica Acta, 2001, 65:3093-3108.
[28] 李双林. 东海陆架HY126EA I孔沉积物稀土元素地球化学[J]. 海洋学报,2001, 23(3):127-132.
[LI Shuanglin. Geochemistry of rare earth element in sediments at HY126EA1 holein the continental shelf of the East China Sea[J]. Acta Oceanologica Sinica, 2001, 23(3):127-132.]
期刊类型引用(22)
1. 谢桐桐,彭晓彤,柳双权,许恒超,徐文景. 马里亚纳海沟“挑战者”深渊沉积物地球化学特征及成因机制. 沉积学报. 2024(03): 944-955 . 百度学术
2. 王海峰,易亮,邓希光,姚翔,姜玉涵,杨永,何高文. 马里亚纳海沟挑战者深渊南坡JL7KBC03短柱样硅质软泥沉积的物源、沉积环境和碳储库效应. 地质学报. 2024(11): 3302-3315 . 百度学术
3. 区相文,邬黛黛,张覃谊,吴能友,刘丽华. 南海北部Site 3A站位沉积物地球化学特征及其对甲烷渗漏的指示. 新能源进展. 2022(02): 111-125 . 百度学术
4. 宋子君,孟凡祎,李维鼎,陈琳莹,罗敏. 马里亚纳海沟沉积物物源示踪和沉积环境分析. 海洋地质与第四纪地质. 2022(04): 84-100 . 本站查看
5. 孙懿,石学法,鄢全树,刘希军,于淼,黄牧,毕东杰,李佳,朱爱美,高晶晶,汪虹敏,张兆祺. 中印度洋海盆富稀土沉积地球化学特征及富集机制研究. 海洋学报. 2022(11): 42-62 . 百度学术
6. 肖春晖,王永红,林间,田纪伟. 马里亚纳“沟-盆”深水沉积环境稀土元素特征与物源约束. 海洋地质与第四纪地质. 2021(01): 102-114 . 本站查看
7. 胡邦琦,易亮,赵京涛,郭建卫,丁雪,王飞飞,谌微微. 西菲律宾海盆XT06孔第四纪磁性地层与深海沉积动力过程. 海洋地质与第四纪地质. 2021(01): 61-74 . 本站查看
8. 石学法,毕东杰,黄牧,于淼,罗一鸣,周天成,张兆祺,刘季花. 深海稀土分布规律与成矿作用. 地质通报. 2021(Z1): 195-208 . 百度学术
9. 王海峰,张振,杨永,邓希光,徐华宁,朱克超,何高文. 中太平洋海盆富稀土沉积层及其声学特征. 地质通报. 2021(Z1): 305-319 . 百度学术
10. 黄牧,石学法,毕东杰,于淼,李力,李佳,张培萍,张霄宇,刘季花,杨刚,周天成,朱爱美. 深海稀土资源勘查开发研究进展. 中国有色金属学报. 2021(10): 2665-2681 . 百度学术
11. Liang Yi,Haifeng Wang,Geng Liu,Yanping Chen,Huiqiang Yao,Xiguang Deng. Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event. Acta Oceanologica Sinica. 2021(12): 1-11 . 必应学术
12. 陈康,徐继尚,李广雪,田举,杨继超,周尚,孙思婷. 雅浦海沟南缘海底表层矿物碎屑粒度特征及其物源指示. 海洋地质与第四纪地质. 2020(05): 46-57 . 本站查看
13. 尼鑫,孙承君,金红,杨桂朋,丁海兵. 雅浦海沟南部超深渊沉积物成分与形貌. 海洋科学进展. 2020(04): 662-675 . 百度学术
14. 刘志兴,庞崇进,王选策,KRAPEZ Bryan. 海斗深渊沉积物组成特征及其物质来源研究进展. 地球化学. 2019(02): 126-137 . 百度学术
15. 林刚,陈琳莹,罗敏,陈多福. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示. 海洋地质与第四纪地质. 2019(03): 12-27 . 本站查看
16. JIANG Zuzhou,SUN Zhilei,LIU Zhaoqing,CAO Hong,GENG Wei,XU Haixia,WANG Lisheng,WANG Libo. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep. Journal of Oceanology and Limnology. 2019(03): 998-1009 . 必应学术
17. 王海峰,赖佩欣,邓希光,王汾连,杨永,邓义楠,何高文. 马里亚纳海沟挑战者深渊初期多金属氧化物的矿物学、地球化学特征及其成因环境研究. 海洋学研究. 2019(01): 21-29 . 百度学术
18. 王鸿平,赵志忠,伏箫诺,李燕. 海南东寨港红树林湿地柱状沉积物稀土元素纵向分异特征. 江苏农业科学. 2018(10): 295-300 . 百度学术
19. 吴彬,李栋,赵军,刘诚刚,孙承君,陈建芳,潘建明,韩正兵,胡佶. 沉积环境对雅浦海沟沉积颗粒物组成和分布的影响. 海洋学报. 2018(10): 167-179 . 百度学术
20. 李栋,赵军,刘诚刚,孙承君,陈建芳,潘建明,杨志,王奎,韩正兵,于培松. 超深渊生境特征及生物地球化学过程研究进展. 地球科学. 2018(S2): 162-178 . 百度学术
21. 邬黛黛,杨飞,黄霞,潘梦迪,孙甜甜,刘丽华,吴能友. 南海东沙海域冷泉渗漏区沉积物稀土元素地球化学特征. 海洋地质与第四纪地质. 2017(05): 59-69 . 本站查看
22. 肖春晖,王永红,林间. 海沟沉积物研究进展. 热带海洋学报. 2017(06): 27-38 . 百度学术
其他类型引用(9)
-
计量
- 文章访问数: 1907
- PDF下载数: 18
- 施引文献: 31