西太平洋板内玄武岩的同位素地球化学特征

施金华, 钟源, 陈立辉, 张国良. 西太平洋板内玄武岩的同位素地球化学特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002
引用本文: 施金华, 钟源, 陈立辉, 张国良. 西太平洋板内玄武岩的同位素地球化学特征[J]. 海洋地质与第四纪地质, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002
SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002
Citation: SHI Jinhua, ZHONG Yuan, CHEN Lihui, ZHANG Guoliang. ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC[J]. Marine Geology & Quaternary Geology, 2017, 37(1): 15-22. doi: 10.16562/j.cnki.0256-1492.2017.01.002

西太平洋板内玄武岩的同位素地球化学特征

  • 基金项目:
    国家自然科学基金项目(41372064)
详细信息
    作者简介: 施金华(1992—),男,硕士生,矿物学、岩石学、矿床学专业,E-mail:shijhgeo@gmail.com
    通讯作者: 陈立辉,男,教授,主要从事火成岩岩石学方面的研究,E-mail:chenlh@nju.edu.cn
  • 中图分类号: P736.4

  • 周立君编辑

ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC

More Information
  • 西太平洋板内玄武岩主要是南太平洋中生代板内岩浆作用的产物。对西太平洋板内玄武岩和南太平洋板内玄武岩的对比研究有助于进一步揭示南太平洋超级地幔柱的性质及其时空演化规律。本文收集整理了西太平洋板内玄武岩的Sr,Nd,Pb同位素数据,并与南太平洋板内玄武岩对比。得到如下认识:(1)西太平洋板内玄武岩同位素组成极不均一,覆盖了所有的富集地幔端元,但主要表现为HIMU和EM-1两端元的混合特征;(2)与南太平洋板内玄武岩相比,西太平洋板内玄武岩的同位素组成的极端程度相对偏低,可能是其地幔源区各组分间混合更均匀的结果;(3)自约120 Ma以来,由于HIMU组分在西太平洋板内玄武岩中持续存在,而EM-1和EM-2型组分表现为断续出现,这可能暗示HIMU端元与两种富集端元在深部地幔中所处的空间不同。

  • 加载中
  • 图 1  西太平洋海山/岛链地形图及平均年龄

    Figure 1. 

    图 2  西太平洋板内玄武岩年龄分布直方图

    Figure 2. 

    图 3  西太平洋板内玄武岩Sr、Nd同位素组成

    Figure 3. 

    图 4  西太平洋板内玄武岩Pb同位素组成

    Figure 4. 

    图 5  西太平洋板内玄武岩Pb-Sr, Pb-Nd同位素相关图

    Figure 5. 

  • [1]

    White W M. Probing the earth′s deep interior through Geochemistry[J]. Geochemical Perspectives, 2015, 4(2): 95-250.

    [2]

    Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    [3]

    Schilling J. Iceland mantle plume: geochemical study of Reykjanes Ridge[J]. Nature, 1973, 242: 565-571. doi: 10.1038/242565a0

    [4]

    Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0

    [5]

    Duncan R A, Clague D A. Pacific Plate Motion Recorded by Linear Volcanic Chains[M]. Springer, 1985: 89-121.

    [6]

    Koppers A A, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 53-68. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231729476/

    [7]

    Koppers A A, Staudigel H, Wijbrans J R, et al. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion[J]. Earth and Planetary Science Letters, 1998, 163(1): 53-68. doi: 10.1016/S0012-821X(98)00175-7

    [8]

    Smith W H, Staudigel H, Watts A B, et al. The Magellan Seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10501-10523. doi: 10.1029/JB094iB08p10501

    [9]

    Winterer E L, Natland J H, Van Waasbergen R J, et al. Cretaceous guyots in the northwest Pacific: An overview of their geology and geophysics[C]. 1993: 307-334.

    [10]

    Shimoda G, Ishizuka O, Yamashita K, et al. Tectonic influence on chemical composition of ocean island basalts in the West and South Pacific: Implication for a deep mantle origin[J/OL]. Geochemistry, Geophysics, Geosystems. 2011, 12(7).doi: 10.1029/2011GC003531.

    [11]

    Konter J G, Hanan B B, Blichert-Toft J, et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature[J]. Earth and Planetary Science Letters, 2008, 275(3): 285-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a81f4478047756d8297dd883fd4e1cec

    [12]

    Koppers A A, Staudigel H, Christie D M, et al. Sr-Nd-Pb isotope geochemistry of leg 144 West Pacific guyouts: Implications for the geochemical evolution of the "SOPITA" mantle anomaly[C]. Ocean Drilling Program, 1995.

    [13]

    Garcia M O, Park K, Davis G T, et al. Petrology and Isotope Geochemistry of Lavas from the Line Islands Chain, Central Pacific Basin[M]. American Geophysical Union, 1993: 217-231.

    [14]

    Clouard V, Bonneville A. Ages of seamounts, islands, and plateaus on the Pacific plate[J]. Geological Society of America Special Papers, 2005, 388: 71-90.

    [15]

    Staudigel H. The longevity of the South Pacific isotopic and thermal anomaly[J]. Earth Planetary Science Letters, 1991: 24-44. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(91)90015-A/

    [16]

    White W M. Sources of oceanic basalts: Radiogenic isotopic evidence[J]. Geology, 1985, 13(2): 115-118. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-JB091iB06p05963/

    [17]

    Tatsumoto M, Unruh D M, Stille P, et al. Pb, Sr, and Nd isotopes in oceanic island basalts[C]. 1984.

    [18]

    Hauri E H, Hart S R. Re-Os isotope systems of HIMU and EMII oceanic island basalts from the South Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 114(2): 353-371. doi: 10.1016/0012-821X(93)90036-9

    [19]

    Bemis K G, Smith D K. Production of small volcanoes in the Superswell region of the South Pacific[J]. Earth and Planetary Science Letters, 1993, 118(1-4): 251-262. doi: 10.1016/0012-821X(93)90171-5

    [20]

    Jackson E D. Linear volcanic chains on the Pacific plate[M]. American Geophysical Union, 1976: 319-335.

    [21]

    Davis A S, Gray L B, Clague D A, et al. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(3): 1-28. doi: 10.1029/2001GC000190

    [22]

    Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757. doi: 10.1038/309753a0

    [23]

    Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature. 1997, 385(6613): 219-229. doi: 10.1038/385219a0

    [24]

    Hofmann A W, White W M. Mantle plumes from ancient oceanic crust[J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436. doi: 10.1016/0012-821X(82)90161-3

    [25]

    Stracke A, Bizimis M, Salters V J M. Recycling oceanic crust: Quantitative constraints[J/OL]. Geochemistry, Geophysics, Geosystems, 2003, 4(3).doi: 10.1029/2001GC000223.

    [26]

    Shorttle O, Maclennan J, Lambart S. Quantifying lithological variability in the mantle[J]. Earth and Planetary Science Letters, 2014, 395: 24-40. doi: 10.1016/j.epsl.2014.03.040

    [27]

    Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science. 1138113

    [28]

    Woodhead J D, Devey C W. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends[J]. Earth and Planetary Science Letters, 1993, 116(1): 81-99. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(93)90046-C/

    [29]

    Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth and Planetary Science Letters, 1998, 164(3): 483-496. doi: 10.1016/s0012-821x(98)00240-4

    [30]

    Rehkamper M, Hofmann A W. Recycled ocean crust and sediment in Indian Ocean MORB[J]. Earth and Planetary Science Letters, 1997, 147(1): 93-106. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0012-821X(97)00009-5/

    [31]

    Eisele J, Sharma M, Galer S J, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot[J]. Earth and Planetary Science Letters, 2002, 196(3): 197-212. doi: 10.1016/s0012-821x(01)00601-x

    [32]

    Chauvel C, Hofmann A W, Vidal P. HIMU-EM: The French Polynesian connection[J]. Earth and Planetary Science Letters, 1992, 110(1): 99-119. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022179645/

    [33]

    Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust[J/OL]. Geochemistry, Geophysics, Geosystems, 2006, 7(4). doi: 10.1029/2005GC001005.

    [34]

    Willbold M, Stracke A. Formation of enriched mantle components by recycling of upper and lower continental crust[J]. Chemical Geology, 2010, 276(3-4): 188-197. doi: 10.1016/j.chemgeo.2010.06.005

    [35]

    Workman R K, Eiler J M, Hart S R, et al. Oxygen isotopes in Samoan lavas: Confirmation of continent recycling[J]. Geology, 2008, 36(7): 551-554. doi: 10.1130/G24558A.1

    [36]

    Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas[J]. 2007, 448(7154): 684-687.

    [37]

    Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain[J/OL]. Geochemistry, Geophysics, Geosystems, 2004, 5(4).doi: 10.1029/2003GC000623.

    [38]

    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2): 381-397. doi: 10.1016/0012-821x(91)90217-6

    [39]

    王小均, 刘建强, 陈立辉. HIMU型洋岛玄武岩的地球化学特征[J].高校地质学报, 2014, 20(3): 353-367.

    WANG Xiaojun, LIU Jianqiang, CHEN Lihui.Geochemical Characteristics of HIMU-type oceanic island basalts[J].Geological Journal of China Universities, 2014, 20(3):353-367.

    [40]

    Cabral R A, Jackson M G, Rose-Koga E F, et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust[J]. Nature, 2013, 496(7446): 490-493. doi: 10.1038/nature12020

    [41]

    Hanyu T, Tatsumi Y, Kimura J. Constraints on the origin of the HIMU reservoir from He-Ne-Ar isotope systematics[J]. Earth and Planetary Science Letters, 2011, 307(3-4): 377-386. doi: 10.1016/j.epsl.2011.05.012

    [42]

    Kawabata H, Hanyu T, Chang Q, et al. The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB[J]. Journal of Petrology, 2011, 52(4): 791-838. doi: 10.1093/petrology/egr003

    [43]

    Eiler J M, Farley K A, Valley J W, et al. Oxygen isotope variations in ocean island basalt phenocrysts[J]. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293. doi: 10.1016/S0016-7037(97)00075-6

    [44]

    Spasojevic S, Gurnis M, Sutherland R. Mantle upwellings above slab graveyards linked to the global geoid lows[J]. Nature Geoscience, 2010, 3(6): 435-438. doi: 10.1038/ngeo855

    [45]

    Wilson J T. A possible origin of the Hawaiian Islands[J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094

    [46]

    Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth's mantle[J]. Earth and Planetary Science Letters, 2003, 205(3-4): 295-308. doi: 10.1016/S0012-821X(02)01048-8

    [47]

    McNutt M K, Caress D W, Reynolds J, et al. Failure of plume theory to explain midplate volcanism in the southern Austral islands[J]. Nature, 1997, 389(6650): 479-482. doi: 10.1038/39013

    [48]

    Anderson D L, Natland J H. Mantle updrafts and mechanisms of oceanic volcanism[J]. Proceedings of the National Academy of Sciences, 2014, 111(41): E4298-E4304. doi: 10.1073/pnas.1410229111

    [49]

    Conrad C P, Bianco T A, Smith E I, et al. Patterns of intraplate volcanism controlled by asthenospheric shear[J]. Nature Geoscience, 2011, 4(5): 317-321. doi: 10.1038/ngeo1111

    [50]

    Bonneville A, Dosso L, Hildenbrand A. Temporal evolution and geochemical variability of the South Pacific superplume activity[J]. Earth and Planetary Science Letters, 2006, 244(1): 251-269. doi: 10.1016/j.epsl.2005.12.037

  • 加载中

(5)

计量
  • 文章访问数:  1357
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2016-10-11
修回日期:  2016-10-31
刊出日期:  2017-02-28

目录