自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义

张现荣, 孙治雷, 魏合龙, 张喜林, 王利波. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003
引用本文: 张现荣, 孙治雷, 魏合龙, 张喜林, 王利波. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003
ZHANG Xianrong, SUN Zhilei, WEI Helong, ZHANG Xilin, WANG Libo. MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003
Citation: ZHANG Xianrong, SUN Zhilei, WEI Helong, ZHANG Xilin, WANG Libo. MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003

自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义

  • 基金项目:
    鳌山科技创新计划项目(2015ASKJ03);国家自然科学基金项目(41376077,41606087);国土资源部海底矿产资源重点实验室开放基金(KLMMR-2015-B-10);中国地质调查局海洋地质调查计划项目(121201005000150015)
详细信息
    作者简介: 张现荣(1986—), 女, 博士研究生, 主要从事海洋地质学研究,E-mail:Sdzxr@126.com
    通讯作者: 孙治雷, E-mail:zhileisun@yeah.net
  • 中图分类号: P736.3

  • 文凤英编辑

MICRO-BIOMINERALIZAITON OF AUTHIGENIC PYRITE AND ITS IMPLICATIONS FOR SEAFLOOR COLD SEEPS

More Information
  • 自生黄铁矿普遍存在于海洋沉积物中,其矿物学、地球化学及同位素组成均蕴含着丰富的环境信息,也是当前地球科学和微生物学交叉研究的典型矿物之一。以之既可用来恢复沉积、成岩环境的演化变迁,亦可为海洋油气和天然气水合物藏勘探、开发提供可靠依据。综述了海洋环境中自生黄铁矿形成机制、铁-硫同位素的分馏及生物地球化学过程及其在冷泉泄漏系统中的指示作用,并对当前围绕黄铁矿进行研究的几个焦点问题的进展进行了阐述,尤其是与引发广泛关注的天然气水合物动态变化间的关系。主要目的是促使更深入地了解黄铁矿的沉淀、成岩作用及环境指示意义,加强人们对微生物催化因素和冷泉泄漏区自生黄铁矿的关注程度。

  • 加载中
  • 图 1  冷泉泄漏区沉积物地球化学分带以及AOM过程[33, 34]

    Figure 1. 

    图 2  微生物介导的硫循环示意图[45]

    Figure 2. 

    图 3  海洋环境中的铁循环模式[55]

    Figure 3. 

  • [1]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fulled by methane from cold seep[J]. Nature Geoscience, 2013, 6: 725-734. doi: 10.1038/ngeo1926

    [2]

    Sassen R, Roberts H H, Aharon P, et al. Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope[J]. Organic Geochemistry, 1993, 20: 77-89. doi: 10.1016/0146-6380(93)90083-N

    [3]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the north western Black Sea[J]. Marine Geology, 2001, 177: 129-150. doi: 10.1016/S0025-3227(01)00128-1

    [4]

    Felden J, Lichtschlag A, Wenzhöfer F, et al. Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan) [J]. Biogeosciences, 2013, 10: 335-370. doi: 10.5194/bgd-10-335-2013

    [5]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103: 1889-1916. doi: 10.1007/s00531-014-1010-0

    [6]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626. doi: 10.1038/35036572

    [7]

    Suess E. The evolution of an idea; from avoiding gas hydrates to actively drilling for them[J]. Joides Journal, 2002, 30: 45-50. http://cn.bing.com/academic/profile?id=52d066380f4433580e980e4e81a0e3b9&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    Sun Z l, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea ResearchⅠ, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    [9]

    Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites[J]. Earth Planetary Science Letter, 2002, 203: 165-180. doi: 10.1016/S0012-821X(02)00830-0

    [10]

    Torres M E, Bohrmann G, Dubé T E, et al. Formation of modern Paleozoic stratiform barite at cold methane seeps on continental margins[J]. Geology, 2003, 31: 897-900. doi: 10.1130/G19652.1

    [11]

    Wang J S, Suess E, Rickert D. Authigenic gypsum found in gas hydrate associated sediments from Hydrate Ridge, the eastern North Pacific[J]. Science in China Serries D Earth Science, 2004, 47: 280-288. doi: 10.1360/02YD0069

    [12]

    Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth Planetary Science Letter, 2011, 309: 89-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1efc142c861e9362c47b4239b4c48524

    [13]

    Neretin L N, Bottcher M E, Jørgensen B B. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochima Acta, 2004, 68: 2081-2093. doi: 10.1016/S0016-7037(03)00450-2

    [14]

    Sassen R, Roberts H H, Carneyc R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes[J]. Chemical Geology, 2004, 205: 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    [15]

    Hallbauer D K. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter uranium and carbonaceous matter mineral deposits of south Africa[J]. Mineral Deposits of Southern Africa, 1986, 12: 731-752.

    [16]

    Perry K A, Pedersen T F. Sulphur speciation and pyrite formation in meromictic ex-fjords[J]. Geochimicaet Cosmochimica Acta, 1993, 57: 4405-4418. doi: 10.1016/0016-7037(93)90491-E

    [17]

    Lewicka-Szczebak D, Trojanowska A, et al. Sulphur isotope mass balance of dissolved sulphate ion in a fresh water dam reservoir[J]. Environmental Chemistry Letters, 2008, 6: 169-173. doi: 10.1007/s10311-007-0120-3

    [18]

    Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta, 2009, 73: A208-A208. http://cn.bing.com/academic/profile?id=365e4a19d5e3f2f9c8346295c021bf42&encoded=0&v=paper_preview&mkt=zh-cn

    [19]

    Ostwald J, England B M. The relationship between euhedral and framboidal pyrite in base metal sulfide ores[J]. Mineralogical Magazine, 1979, 43: 297-300. doi: 10.1180/minmag.1979.043.326.13

    [20]

    Sapota T. Morphology, internal structure and chemical composition of oxidized pyrite framboids from sediments of Lake Baikal, Siberia[J]. Neues Jahrbuch Für Mineralogie A bhandlungen, 2005, 181: 111-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d5602a836d4252138ddc73805e2332a

    [21]

    Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society of London, 1985, 315: 25-38. doi: 10.1098/rsta.1985.0027

    [22]

    李安春, 陈丽蓉, 申顺喜, 等.南黄海中部H-106柱状沉积物中自生黄铁矿的研究[J].海洋科学集刊, 1993, 34: 79-86. http://www.cnki.com.cn/Article/CJFDTotal-HKJK199300006.htm

    LI Anchun, CHEN Lirong, SHEN Huang, et al. Study on the uthigenic pyrite in the core H-106 form the central south Yellow Sea [J]. Study Marine Sinica, 1993, 34: 79-86. http://www.cnki.com.cn/Article/CJFDTotal-HKJK199300006.htm

    [23]

    初凤友, 陈丽蓉, 申顺喜, 等.南黄海沉积物中自生黄铁矿的形态标型研究[J].海洋与湖沼, 1994, 25: 461-467. doi: 10.3321/j.issn:0029-814X.1994.05.001

    CHU Fengyou, CHEN Lirong, SHEN Shunxi, et al. Morphological features of authigenic pyrite from south Yellow Sea sediments [J]. Oceanologia et Loimnologia Sinica, 1994, 25: 461-467. doi: 10.3321/j.issn:0029-814X.1994.05.001

    [24]

    Schieber J. Sedimentary pyrite: A window into the microbial past[J]. Geology, 2002, 30: 531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2

    [25]

    Rasmussen B. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Gas shales[J]. Geology, 2005, 33: 497-500. doi: 10.1130/G21316.1

    [26]

    Chen D F, Feng D, Su Z. Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science and Engineering C, 2006, 26: 602-605. doi: 10.1016/j.msec.2005.08.037

    [27]

    Archer C, Vance D. Coupled Fe and S isotope evidence for Archean microbial Fe3+ and sulfate reduction[J]. Geology, 2006, 34: 153-156. doi: 10.1130/G22067.1

    [28]

    Berner R A. Sedimentary pyrite formation: an update[J]. Geochima et Cosmochima Acta, 1984, 48: 605-615. doi: 10.1016/0016-7037(84)90089-9

    [29]

    Jørgensen B B, Bottcher M E, Luschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68: 2095-2118. doi: 10.1016/j.gca.2003.07.017

    [30]

    Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297: 1013-1015. doi: 10.1126/science.1072502

    [31]

    Borowski W S, Paull C K, Ussler Ⅲ W. Marine pore water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24: 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [32]

    Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159: 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [33]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161: 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [34]

    Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge; offshore southeastern North America. Proceeding of the Ocean Drilling Programe[J]. Scientific Results, 2000, 164: 301-312. http://cn.bing.com/academic/profile?id=631d44a07212e8f1796840bd2e222407&encoded=0&v=paper_preview&mkt=zh-cn

    [35]

    刘坚, 陆红锋, 廖志良, 等.东沙海域浅层沉积物硫化物分布特征及其与天然气水合物的关系[J].地学前缘, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028

    LIU jian, LU Hong feng, LIAO zhiliang, et al. Distribution in sulfides in shallow sediments in dongsha areas, South china Seas and its relationship to gas hydrates [J]. Earth Science Frontiers, 2005, 12(3): 258-262. doi: 10.3321/j.issn:1005-2321.2005.03.028

    [36]

    Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159: 93-109. doi: 10.1016/S0025-3227(98)00200-X

    [37]

    Novosel L, Spence G D, Hyndman R D. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 2005, 216: 265-274. doi: 10.1016/j.margeo.2005.02.027

    [38]

    陈忠, 颜文, 陈木宏, 等.南沙海槽表层沉积自生石膏一黄铁矿组合的成因及其对天然气渗漏的指示意义[J].海洋地质与第四纪地质, 2007, 27(2): 91-100. http://www.cqvip.com/Main/Detail.aspx?id=24314013

    CHEN Zhong, YAN Wen, CHEN Muhong, et al.Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in Nansha Trough, South China Sea [J]. Marine Geology and Quaternary Geology, 2007, 27(2): 91-100. http://www.cqvip.com/Main/Detail.aspx?id=24314013

    [39]

    Wang J S, Chen Q, Wei Q, et al. Authigenic pyrites and their stable sulfur isotopes in sediments from IODP 311 on Cascadia margin, Northeastern Pacific[C]//In: Proceedings of the 6th International conference on Gas hydrates (ICGH2008), Vancouver, British Columbia, Canada, 2008.

    [40]

    Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochima Acta, 1996, 60: 3897-3912. doi: 10.1016/0016-7037(96)00209-8 http://cn.bing.com/academic/profile?id=f38083b2fa06d41de189214b4f36302a&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Zhang M, Konishi H, Sun X M, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92: 293-301. doi: 10.1016/j.jseaes.2014.05.004

    [42]

    Zhang M, Sun X M, Xu L, et al. Nano-sized graphitic carbon in authigenic tube pyrites from offshore southwest Taiwan, South China Sea, and its implication for tracing gas hydrate[J]. Chinese Science Bullentin, 2011, 56: 2037-2043. doi: 10.1007/s11434-011-4527-7

    [43]

    Thamdrup B, Finster K, Hansen J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1993, 59: 101-108. http://cn.bing.com/academic/profile?id=1329283f01d4b388be3c391bd2c05c9a&encoded=0&v=paper_preview&mkt=zh-cn

    [44]

    Canfield D E, Olesen CA, Cox R P. Temperature and its control of isotope fractionation by a sulfate reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2006, 70: 548-561. doi: 10.1016/j.gca.2005.10.028

    [45]

    杨雪英, 龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学-中国地质大学学报, 2011, 36(4): 643-658. http://d.old.wanfangdata.com.cn/Periodical/cjxb201703006

    YANG Xueying, GONG Yiming. Pyrite Framboid: Indicator of Environments and Life [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(4):643-658. http://d.old.wanfangdata.com.cn/Periodical/cjxb201703006

    [46]

    Bottcher M E, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: evidence from stable isotopes and pyrite textures[J]. Journal of Marine Systems, 2000, 25: 299-312. doi: 10.1016/S0924-7963(00)00023-3

    [47]

    Aharon P, Fu B. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico[J]. Geochimica et Cosmochima Acta, 2000, 2: 233-246. http://cn.bing.com/academic/profile?id=f51fc75c004f0481dad6a51aa14417d9&encoded=0&v=paper_preview&mkt=zh-cn

    [48]

    蒲晓强, 钟少军, 于雯泉, 等.南海北部陆坡NH-1孔沉积物中自生硫化物及其硫同位素对深部甲烷和水合物存在的指示[J].科学通报, 2006, 51(24): 2874-2880. doi: 10.3321/j.issn:0023-074X.2006.24.011

    PU Xiaoqiang, ZHONG Shaojun, YU Wenquan, et al.The characteristic of authigenic sulfides and sulfur isotope of core NH1 and its implycation for methane hydrate in Northern south China sea slope[J]. Chinese Sinica Bulletin, 2006, 51(24): 2874-2880. doi: 10.3321/j.issn:0023-074X.2006.24.011

    [49]

    陈祈, 王家生, 李清, 等.海洋天然气水合物系统硫同位素研究进展[J].现代地质, 2007, 21(1): 111-115. doi: 10.3969/j.issn.1000-8527.2007.01.014

    CHEN Qi, WANG Jiasheng, LI Qing, et al. Research progresses of sulfur isotope in marine gas hydrate geological system[J]. Geosince, 2007, 21(1): 111-115. doi: 10.3969/j.issn.1000-8527.2007.01.014

    [50]

    Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record[J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    [51]

    Guilbaud R, Butler Ⅰ B, Ellam R M. Abiotic pyrite formation produces a large Fe isotope fractionation[J]. Science, 2011, 332: 1548-1551. doi: 10.1126/science.1202924

    [52]

    Raiswell R, Canfield D. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1: 1-2. doi: 10.7185/geochempersp.1.1

    [53]

    Busigny V, Planavsky N J, Jezequela D, et al. Iron isotopes in an Archean ocean analogue[J]. Geochimica et Cosmochima Acta, 2014, 133: 443-462. doi: 10.1016/j.gca.2014.03.004

    [54]

    Morse J W. Interactions of trace metals with authigenic sulfide minerals-implications for their bioavailability[J]. Marine Chemistry, 1994, 46: 1-6. doi: 10.1016/0304-4203(94)90040-X

    [55]

    Johnson C M, Beard B L. Biogeochemical Cycling of Iron Isotopes[J]. Science, 2005, 309: 1025-1027. doi: 10.1126/science.1112552

    [56]

    Matthews A, Bell M, Helen S, et al. Controls on iron-isotope fractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, Southern England) [J]. Geochimica et Cosmochimica Acta, 2004, 68: 3107-3123. doi: 10.1016/j.gca.2004.01.019

    [57]

    Severmann S, Johnsona C M, Bearda B L, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2006-2022. doi: 10.1016/j.gca.2006.01.007

    [58]

    Canfield D E, Jorgensen B B, Fossing H, et al. Pathways of organic-carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113: 27-40. doi: 10.1016/0025-3227(93)90147-N

    [59]

    张美, 孙晓明, 徐莉, 等.南海东北部陆坡HD196A站位柱状沉积物中自生黄铁矿S、Fe同位素特征及其意义[J].中国地球物理, 2011, 26: 970. http://d.old.wanfangdata.com.cn/Conference/7627182

    ZHANG Mei, SUN Xiaoming, XU Li, et al. Chearateristic of surfer and iron isotope of authigenic pyrite in sediment core from site HD19A6, Northeastern South China Sea and their significances[J] Chinese Geophysical, 2011, 26: 970. http://d.old.wanfangdata.com.cn/Conference/7627182

    [60]

    Severmann S, Lyons T W, Anbar A, et al. Modern iron isotope perspective on Fe shuttling in the Archean and the redox evolution of ancient oceans[J]. Geology, 2008, 36: 487-490. doi: 10.1130/G24670A.1

    [61]

    Lim Y C, Lin S, Yang T F, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J]. Marine Petrol Geology, 2011, 28: 1829-1837. doi: 10.1016/j.marpetgeo.2011.04.004

    [62]

    Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7: 657-661. doi: 10.1038/ngeo2232

    [63]

    陆红锋, 陈芳, 廖志良, 等.南海东北部HD196A岩心的自生条状黄铁矿[J].地质学报, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010

    LU Hongfeng, CHEN Fang, LIAO Zhiliang, et al. Authigenic Pyrite Rods from the Core HD196A in the Northeastern South China Sea[J]. Acta Geologica Sinica, 2007, 81(4): 519-525. doi: 10.3321/j.issn:0001-5717.2007.04.010

  • 加载中

(3)

计量
  • 文章访问数:  2054
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2016-03-22
修回日期:  2016-06-16
刊出日期:  2017-04-28

目录