Distribution and Migration Pattern of Surficial Suspended Matter in Zhejiang and Fujian Mud Area Detected by Landsat Satellite Images
-
摘要:
基于2007年2月和2015年6月的东海悬浮体浓度数据,分别对2007年2月、7月的Landsat Thematic Mapper(Landsat-TM)和2014年12月、2015年6月Landsat Operational Land Imager(Landsat-OLI)卫星影像建立表层悬浮体浓度反演模型,发现建立的指数函数模型反演效果最佳,相关系数分别为0.971和0.856,其可以反映冬夏两季表层悬浮体分布特征及其控制作用。研究发现,浙闽沿岸海域表层悬浮体浓度呈近岸高远岸低、冬季高夏季低的特点;冬季浙闽沿岸流携带的表层悬浮体浓度范围为10~28 mg/L,台湾暖流为1.5~5 mg/L;夏季浙闽沿岸流携带的表层悬浮体浓度范围为4~22 mg/L,台湾暖流为1.2~2.3 mg/L。并且在冬季发现在40 m水深海域存在较明显的表层悬浮体浓度次级锋面及一系列涡旋,而夏季不明显,推测冬季悬浮体对现代浙闽涡旋泥质区形成有所贡献。
Abstract:Inversion models of SSC are established based on the observed suspended sediment concentration (SSC) in the East China Sea in February 2007 and June 2015, in combination with the satellite images. It is found that the exponential inversion model is the best in use. The squared correlation coefficient is 0.971 and 0.856 for 2007 and 2015 respectively. The results may well suggest the distribution pattern and control factors of the suspended sediment. It is also found that the near shore SSC is stronger than offshore one, and the winter one is higher than that in summer. In winter, the SSC ranges 10~28 mg/L in the Zhejiang and Fujian Coastal Current and 1.5~5 mg/L in the Taiwan warm current. In summer, however, the SSC ranges 4~22 mg/L in the Zhejiang and Fujian Coastal Current and 1.2~2.3 mg/L in the Taiwan warm current. A SSC secondary front was found in the research in addition to the vortices found in the 40 m water depth in winter. However, the SSC secondary front and vortices are not so obvious in summer. According to the result, the winter suspended sediment may contribute more to the formation of the Modern Zhejiang and Fujian vortex mud area.
-
表 1 影像编号及获取时间信息
Table 1. Image number and time information
TM OLI 编号 获取时间 编号 获取时间 117040-117042 2007-02-11 117040-117042 2015-06-25 118040-118042 2007-02-02 118040-118042 2015-06-16 117040-117042 2007-07-22 117040-117042 2014-12-31 118040-118042 2007-07-28 118040-118042 2014-12-22 表 2 估算数据与实测数据对比
Table 2. Comparison between measured and estimate data
SSC/(mg/L) 相对误差/% 估算值 实测值 2.38 2.54 6.45 2.17 1.88 15.28 3.95 4.47 11.67 1.54 1.56 0.98 2.10 2.16 2.56 2.05 1.61 27.7 1.86 1.99 6.66 2.08 2.91 28.4 2.20 2.24 8.53 3.46 3.41 1.6 2.06 2.21 6.58 1.93 2.17 10.92 3.94 3.33 18.2 2.89 2.50 15.6 2.17 2.00 8.5 注:SSC估算值是基于与本次采样时间最近的Landsat 8卫星影像通过本文的比值模型(式(2))估算到的表层泥沙浓度,SSC实测值是2015年6月20—24日采样的实测值,卫星影像是2015年6月16日与6月25日的各三景,相对误差:|SSC估算值-SSC实测值| /SSC实测值*100%。 -
[1] 刘志国.长江口水体表层泥沙浓度的遥感反演与分析[D].上海: 华东师范大学, 2007.
http://cdmd.cnki.com.cn/Article/CDMD-10269-2007082904.htm LIU Zhiguo.Retrieval and Analysis of surface Suspend Sediment Concentration by Remote Sensing in Yangtze River Estuary[D]. Shanghai: East China Normal University, 2007.
[2] 丛丕福.水色遥感机理与悬浮物的卫星遥感信息识别研究[D].大连海事大学, 2002.
http://cdmd.cnki.com.cn/Article/CDMD-10151-2003030835.htm CONG Peifu, Water-color remote sensing principle and retrieval of suspended sediment concentration with satellite remote sensing method[D]. Dalian Maritime University, 2002.
[3] 胡新礼.水体悬浮泥沙多角度偏振反射特性定量研究[D].东北师范大学, 2005.
http://cdmd.cnki.com.cn/article/cdmd-10200-2005073433.htm HU Xinli, The water body suspended silt many angle polarization reflection the quantitative research of the characteristic[D].Northeast Normal University, 2005.
[4] 巩彩兰, 樊伟.海洋水色卫星遥感二类水体反演算法的国际研究进展[J].海洋通报, 2002, 21(2):77-83. doi: 10.3969/j.issn.1001-6392.2002.02.012
GONG Cailan, FAN Wei. Algorithms for case 2 waters of remote sensing of ocean color[J]. Marine Science Bulletin, 2002, 21(2): 77-83. doi: 10.3969/j.issn.1001-6392.2002.02.012
[5] 庞重光, 杨扬, 刘志亮.黄东海悬浮泥沙输运结构及其形成机制[J].泥沙研究, 2010 (3):24-30. http://d.old.wanfangdata.com.cn/Periodical/nsyj201003004
PANG Chongguang, YANG Yang, LIU Zhiliang. Transportation pattern of suspended sediment and its forming mechanism in the Yellow and East China Sea[J].Journal of Sediment Research, 2010(3):24-30. http://d.old.wanfangdata.com.cn/Periodical/nsyj201003004
[6] 孟灵, 屈凡柱, 毕晓丽.二类水体悬浮泥沙遥感反演算法综述[J].浙江海洋学院学报:自然科学版, 2011, 30(5):443-449. http://d.old.wanfangdata.com.cn/Periodical/zjhyxyxb-zr201105014
MENG L, QU F, BI X. A review of retrieval algorithms for suspended sediment concentration by remote sensing[J]. Journal of Zhejiang Ocean University (Natural Science), 2011, 30(5):443-449. http://d.old.wanfangdata.com.cn/Periodical/zjhyxyxb-zr201105014
[7] Gordon H R, Brown O B, Evans R H, et al. A semianalytic radiance model of ocean color[J]. Journal of Geophysical Research Atmospheres, 1988, 93(D9):10909-10924. doi: 10.1029/JD093iD09p10909
[8] TASSAN S. An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters[J]. International Journal of Remote Sensing, 1993, 14:1221-1229. doi: 10.1080/01431169308904406
[9] Wang J J, Lu X X, Zhou Y. Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+[J]. Chinese Science Bulletin, 2007, 52(2 Supplement):273-280. http://cn.bing.com/academic/profile?id=d4a731b817d8349e37bad5b680fe69e0&encoded=0&v=paper_preview&mkt=zh-cn
[10] Zhou W, Wang S, Troy Y Z A. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat TM data[J]. International Journal of Remote Sensing, 2008, 27(6):1177-1191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01431160500353825
[11] Cai L N, Tang D L, Li C Y. An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data[J]. Advances in Space Research, 2015, 44(2):293-303. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcdd51ba73199a1869787f72a3aea0ca
[12] 覃志豪, Karnieli A.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报, 2001, 56(4):456-466. http://d.old.wanfangdata.com.cn/Periodical/dlxb200104009
QIN Zhihao, Karnieli A. Mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 56(4):456-466. http://d.old.wanfangdata.com.cn/Periodical/dlxb200104009
[13] Jiménez-Muñoz J C, Sobrino José A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003, 108(D22):2015-2023. http://cn.bing.com/academic/profile?id=a78e1ac280707c7eeab3f721def6d49e&encoded=0&v=paper_preview&mkt=zh-cn
[14] Jiménez-Muñoz J C, Sobrino J A, Skokovic D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(10):1840-1843. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f77c35cd434444e9d0112962236f6bea
[15] Jilan S, Yuqiu P. On the shelf circulation north of Taiwan[J].Acta Oceanologica Sinica, 1987, 6(Supp.Ⅰ): 1-20. http://www.cnki.com.cn/Article/CJFDTotal-SEAE1987S1000.htm
[16] 白虹, 王凡.台湾暖流水和长江冲淡水在32°N断面和PN断面上的分布及其变化[J].海洋科学集刊, 2010, 50(00):11-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykjjk200901002
BAI Hong, WANG Fan. Distribution and variation of Taiwan warm current water and changjiang diluted water along 32°N and PN sections[J].Studia Marina Sinica, 2010, 50(00):11-22] http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykjjk200901002
[17] Qiao F L, Yang Y Z, Lv X G, et al. Coastal upwelling in the East China Sea in winter[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005JC003264
[18] Yuan D, Hsueh Y. Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2010, 57(19-20):1745-1761. doi: 10.1016/j.dsr2.2010.04.002
[19] 陈倩, 黄大吉, 章本照.浙江近海潮汐潮流的数值模拟[J].海洋学报, 2003, 25(5):9-20. doi: 10.3321/j.issn:0253-4193.2003.05.002
CHEN Qian, HUANG Daji, ZHANG Benzhao. Numerical simulation of tide and tidal currents in the seas adjacent to Zhejiang[J]. Acta Oceanologica Sinica, 2003, 25(5): 9-20. doi: 10.3321/j.issn:0253-4193.2003.05.002
[20] 郭志刚, 杨作升, 张东奇, 等.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J].海洋学报, 2002, 24(9):71-80. doi: 10.3321/j.issn:0253-4193.2002.05.009
GUO Zhigang, YANG Zuosheng, ZHANG Dongqi, et al. Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport[J]. Acta Oceanologica Sinica, 2002, 24(5): 71-80. doi: 10.3321/j.issn:0253-4193.2002.05.009
[21] 郭琳, 陈植华.椒江口—台州湾悬浮泥沙分布特征遥感研究[J].武汉理工大学学报, 2007, 29(5):49-52. doi: 10.3321/j.issn:1671-4431.2007.05.015
GUO Lin, CHEN Zhihua. Remote sensing research on the distribution characteristics of suspended matter in Jiaojiang Estuary and Taizhou Gulf[J]. Journal of Wuhan University of Technology, 2007, 29(5):49-52. doi: 10.3321/j.issn:1671-4431.2007.05.015
[22] 张毅博, 张运林, 査勇, 等.基于Landsat 8影像估算新安江水库总悬浮物浓度[J].环境科学, 2015, 36(1): 56-63. doi: 10.3969/j.issn.1006-4427.2015.01.011
ZHANG Yibo, ZHANG Yunlin, ZHA Yong, et al.Remote sensing estimation of total suspended matter concentration in Xin′anjiang Reservoir using landsat 8 data[J]. Environmental Science, 2015, 36(1): 56-63. doi: 10.3969/j.issn.1006-4427.2015.01.011
[23] 李文红.鄱阳湖水体反射光谱分析及悬浮泥沙定量反演研究[D].江西理工大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10407-1015577764.htm LI Wenhong. Analysis of Poyang lake water reflection spectrum and research on the quantitative inversion of suspended sediment[D]. Jiangxi University of Science and Technology, 2014]
[24] 许金电, 黄奖, 邱云, 等.浙闽沿岸水的空间结构特征及生消过程[J].热带海洋学报, 2015, 36(1):1-7. doi: 10.3969/j.issn.1009-5470.2015.01.001
XU Jindian, HUANG Jiang, QIU Yun, et al. Spatial structure characteristics of Zhejiang and Fujian coastal water and their evolution[J].Journal of Tropical Oceanography, 2015, 36(1):1-7. doi: 10.3969/j.issn.1009-5470.2015.01.001
[25] 曾定勇, 倪晓波, 黄大吉.冬季浙闽沿岸流与台湾暖流在浙南海域的时空变化[J].中国科学:地球科学, 2012, 42(7):1123-1134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201207019
ZENG Dingyong, NI Xiaobo, HUANG Daji. Temporal and spatial variability of the ZheMin coastal current and the Taiwan warm current in winter in thesouthern Zhejiang coastal sea[J]. Sci.Sin. Terrae, 2012, 42(7): 1123-1134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201207019
[26] 胡日军.舟山群岛海域泥沙运移及动力机制分析[D].中国海洋大学, 2009.
http://cdmd.cnki.com.cn/Article/CDMD-10423-2009162543.htm HU Rijun. Sediment transport and dynamic mechanism in the Zhoushan Archipelago sea area [D]. Ocean University of China, 2009.
[27] Liu S, Qiao L, Li G, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the east China sea[J]. Continental Shelf Research, 2015, 107:92-102. doi: 10.1016/j.csr.2015.07.013
[28] 孙效功, 方明, 黄伟.黄、东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼, 2000, 31(6):581-587. doi: 10.3321/j.issn:0029-814X.2000.06.001
SUN Xiaogong, FANG Ming, HUANG Wei. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 581-587. doi: 10.3321/j.issn:0029-814X.2000.06.001
[29] 王文娟.东中国海表层悬浮体分布的遥感反演及输运机制研究[D].中国海洋大学, 2008.
http://cdmd.cnki.com.cn/Article/CDMD-10423-2008174808.htm WANG Wenjuan. Study on the suspended matter's distribution from remote sensing retrieval and its movement mechanisms in the surface layer of the East China Seas[D].Ocean University of China, 2008.
[30] 边昌伟.中国近岸泥沙在渤海、黄海和东海的输运[D].中国`海洋大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10423-1012505862.htm BIAN Changwei. Chinese coastal sediment transport in the Bohai Sea, Yellow Sea and East China Sea[D].Ocean University of China, 2012.
[31] Bian C, Jiang W, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research Oceans, 2013, 118(11):5908-5923. doi: 10.1002/2013JC009116
[32] 刘升发, 石学法, 刘焱光, 等.东海内陆架泥质区夏季悬浮体的分布特征及影响因素分析[J].海洋科学进展, 2011, 29(1):37-46. doi: 10.3969/j.issn.1671-6647.2011.01.005
LIU Shengfa, SHI Xuefa, LIU Yangaung, et al. Distributions of suspended matter in the inner-shelf mud area of the East China Sea in summer and their influence factors[J].Advance in Marine Science, 2011, 29(1):37-46. doi: 10.3969/j.issn.1671-6647.2011.01.005
[33] 李广雪, 杨子赓, 刘勇.中国东部海域海底沉积环境成因研究[M].北京:科学出版社, 2005:1-44.
LI Guangxue, YANG Zigeng, LIU Yong. The research of the origin of the sea bottom sedimentary environment in China Seas[M]. Beijing: The Science Publishing Company, 2005: 1-44.
[34] Pang C G, Hu D X. Upwelling and sedimentation dynamics Ⅲ: coincidence of upwelling and areas with mud patches in north hemisphere shelf seas[J]. Chinese Journal of Oceanology and Limnology, 2002, 20(2): 101-106. doi: 10.1007/BF02849645 http://cn.bing.com/academic/profile?id=671a3363e54d4ec06312f51aa662a240&encoded=0&v=paper_preview&mkt=zh-cn
[35] 苏健.跨陆架锋水交换的数值研究[D].中国海洋大学, 2005.
http://cdmd.cnki.com.cn/article/cdmd-10423-2005140460.htm SU Jian. A numerical study of cross-front water exchange[D]. Ocean University of China, 2005.
[36] 杨扬, 庞重光.黄东海表层悬沙浓度次级锋面及其季节变化初探[J].泥沙研究, 2012(2):41-46. doi: 10.3969/j.issn.0468-155X.2012.02.007
YANG Yang, PANG Chongguang. Suspended sediment sub-front and its seasonal variability in Yellow and East China Seas[J]. Journal of Sediment Research, 2012(2): 41-46. doi: 10.3969/j.issn.0468-155X.2012.02.007
[37] 鲍献文, 林霄沛, 吴德星, 等.东海陆架环流季节变化的模拟与分析[J].中国海洋大学学报:自然科学版, 2005, 35(3):349-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200503001
BAO Xianwen, LIN Xiaopei, WU Dexing. Simulation and analysis of shelf circulation and its seasonal variability in the East China Sea[J]. Journal of Ocean University of China, 2005, 35(3): 349-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200503001
[38] 石学法, 刘升发, 乔淑卿, 等.东海闽浙沿岸泥质区沉积特征与古环境记录[J].海洋地质与第四纪地质, 2010, 30(4):24-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201004004
SHI Xuefa, LIU Shengfa, QIAOShuqing, et al. Depositional features and palaeoenvironmental records of the mud deposition in Min-Zhe coastal mud area, East China Sea [J]. Marine Geology and Quaternary Geology, 2010, 30(4):24-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201004004