-
摘要:
深水盆地沉积物的压实作用直接关系到沉积物本身的稳定性,沉积物压实不均衡可能引发严重的深水地质灾害,如海底滑坡、浅层气、浅水流等,同时对钻井工程也会造成严重影响,如出现井漏、井喷,甚至引发平台不稳定至坍塌。选取了南海深水盆地ODP184航次1144、1146、1148站位与IODP349航次U1431、U1432、U1433、U1435站位的测井数据进行分析,获得了南海深水盆地沉积物正常压实系数与沉积物组分、沉积速率、沉积物埋深等多个影响因素的关系,初步建立起南海深水盆地不同深度沉积物正常压实系数与初始孔隙度的变化规律。为今后研究南海深水盆地地质灾害,特别是超压地质灾害提供参考。
Abstract:The stability of sediments is closely related to sediment compaction in deepwater basins. Facts suggest that uneven compaction of sediments may trigger serious geodisasters in deepwater, such as submarine landslides, shallow gas and shallow water flow, which may bring about serious impacts on the security of the drilling operation by leakages, blowouts, platform instability and even collapse. We analyzed in this paper the well-logging data of the ODP Leg 184 Sites 1144, 1146, 1148 and the IODP Leg 349 Sites U1431, U1432, U1433, U1435, and found the relationships between the normal compaction and the sediments composition, sedimentation rates and burial depth etc. Taking the deepwater basin of the South China Sea as examples. Established upon the research are the primary relationship of the coefficients of normal compaction and mudline porosity with depth in deepwater basin of the South China Sea. The results could be used as a reference for geohazards researches, especially for the overpressured geohazards in deepwater.
-
表 1 各站位钻井沉积物正常压实层段孔隙度与深度(泥海底线以下)拟合结果
Table 1. Fitted results of porosity and depth (below the mudline) in normal compaction sediments at all Sites
站位 水深/m 拟合深度/m 压实系数 初始孔隙度 R2 1144 2 037 450 0.000 755 547 0.584 485 608 0.815 559 1146 2 092 170 0.002 213 826 0.674 115 233 0.912 179 1148 3 246 460 0.001 374 514 0.584 401 796 0.912 126 U1431 4 237 500 0.000 888 844 0.565 614 573 0.636 038 U1432 3 829 120 0.003 646 652 0.649 199 6 0.705 043 U1433 4 379 700 0.000 621 063 0.535 213 818 0.675 121 U1435 3 252 300 0.003 301 695 0.497 459 197 0.718 408 表 2 各站位钻井深度100 m以上沉积物正常压实孔隙度与深度(海底泥线以下)拟合结果
Table 2. Fitted results of porosity and depth (below the mudline) in 100 m drilling depth at all Sites
站位 水深/m 拟合深度/m 压实系数c 初始孔隙度ϕ0 R2 数据量 1144 2 037 100 0.002 175 931 0.635 431 987 0.871 93 73 1146 2 092 100 0.001 566 811 0.656 554 092 0.771 10 54 1148 3 246 100 0.003 514 827 0.667 174 148 0.919 59 53 U1431 4 237 100 0.002 630 228 0.639 528 484 0.480 00 71 U1432 3 829 100 0.003 993 244 0.656 653 229 0.677 15 57 U1433 4 379 100 0.002 860 513 0.625 794 137 0.542 06 57 U1435 3 252 100 0.009 452 971 0.775 503 404 0.552 29 21 -
[1] 董冬冬, 赵汗青, 吴时国, 等.深水钻井中浅水流灾害问题及其地球物理识别技术[J].海洋通报, 2007, 26(1): 114-120. doi: 10.3969/j.issn.1001-6392.2007.01.019
DONG Dongdong, ZHAO Hanqing, WU Shiguo, et al. SWF problem in deepwater drilling and its geophysical detection techniques[J]. Journal of Marine Science Bulletin, 2007, 26(1): 114-120. doi: 10.3969/j.issn.1001-6392.2007.01.019
[2] 刘锋, 吴时国, 孙运宝.南海北部陆坡水合物分解引起海底不稳定性的定量分析[J].地球物理学报, 2010, 53(4): 946-953. doi: 10.3969/j.issn.0001-5733.2010.04.019
LIU Feng, WU Shiguo, SUN Yunbao. A quantitative analysis for submarine slope instability of the northern South China Sea due to gas hydrate dissociation[J]. Chinese Journal of Geophysics, 2010, 53(4): 946-953. doi: 10.3969/j.issn.0001-5733.2010.04.019
[3] 孙运宝.南海北部陆坡深水区地质灾害机理与钻前预测[D].中国科学院研究生院(海洋研究所)博士学位论文, 2011.
SUN Yunbao. The mechanism and prediction of deepwater geohazard in the northern of South China Sea[D]. Doctoral Dissertation of Chinese Academy of Sciences, Institute of Oceanology, 2011.
[4] 吴时国, 谢杨冰, 秦芹, 等.深水油气浅层钻井的"三浅"地质灾害[J].探矿工程:岩土钻掘工程, 2014, 41(9): 38-42. http://www.cnki.com.cn/Article/CJFDTotal-TKGC201409009.htm
WU Shiguo, XIE Yangbing, QIN Qin, et al. Shallow drilling geological disasters of oil nd gas in deepwater[J]. Exploration Engineering: Rock & Soil Drilling and Tunneling, 2014, 41(9): 38-42. http://www.cnki.com.cn/Article/CJFDTotal-TKGC201409009.htm
[5] Xie X, Li S, He H, et al. Seismic evidence for fluid migration pathways from an overpressured system in the South China Sea[J]. Geofluids, 2003, 3(4): 245-253. doi: 10.1046/j.1468-8123.2003.00070.x
[6] 姜涛, 解习农.莺歌海盆地高温超压环境下储层物性影响因素[J].地球科学-中国地质大学学报, 2005, 30(2): 215-220. doi: 10.3321/j.issn:1000-2383.2005.02.015
JIANG Tao, XIE Xinong. Effects of high temperature and overpressure on reservoir quality in the Yinggehai Basin, south Chian Sea[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(2): 215-220. doi: 10.3321/j.issn:1000-2383.2005.02.015
[7] 苏龙, 郑建京, 王琪, 等.琼东南盆地超压研究进展及形成机制[J].天然气地球科学, 2012, 23(4): 662-672. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201204007
SU Long, ZHENG Jianjing, WANG Qi, et al. Formation mechanism and research progress on overpressure in the Qiongdongnan Basin[J]. Natural Gas Geoscience, 2012, 23(4): 662-672. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201204007
[8] 孙运宝, 赵铁虎, 秦轲.基于沉积压实模型的压力演化特征数值模拟——以1148井为例[J].地球物理学进展, 2015, 30(2): 607-615. doi: 10.6038/pg20150217
SUN Yunbao, ZHAO Tiehu, QIN Ke. Forward modeling of compaction-driven pressure evolution: examples from ODP 1148 site[J]. Progress in Geophysics, 2015, 30(2): 607-615. doi: 10.6038/pg20150217
[9] 谢玉洪.莺歌海高温超压盆地压力预测模式及成藏新认识[J].天然气工业, 2011, 31(12): 21-25. doi: 10.3787/j.issn.1000-0976.2011.12.004
XIE Yuhong. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure[J]. Natural Gas Industry, 2011, 31(12): 21-25. doi: 10.3787/j.issn.1000-0976.2011.12.004
[10] 张启明, 刘福宁, 杨计海.莺歌海盆地超压体系与油气聚集[J].中国海上油气(地质), 1996, 10(2): 65-75. http://d.old.wanfangdata.com.cn/NSTLQK/10.1128-JB.01166-09/
ZHANG Qiming, LIU Funing, YANG Jihai. Overpressure system and hydrocarbon accumulation in the Yinggehai Basin[J]. China Offshore Oil and Gas(Geology), 1996, 10(2): 65-75. http://d.old.wanfangdata.com.cn/NSTLQK/10.1128-JB.01166-09/
[11] 张迎朝, 徐新德, 王立锋, 等.南海北部超压低渗气藏成藏过程与成藏模式——以莺歌海盆地XF区XF13-1超压气田为例[J].天然气地球科学, 2015, 26(9): 1679-1688. doi: 10.11764/j.issn.1672-1926.2015.09.1679
ZHANG Yingzhao, XU Xinde, WANG Lifeng, et al. The accumulation process and model of overpressured low permeability gas pool in the North of South China Sea: a case study of XF13-1 overpressured gas field in XF Area of the Yinggehai Basin[J]. Natural Gas Geoscience, 2015, 26(9): 1679-1688. doi: 10.11764/j.issn.1672-1926.2015.09.1679
[12] 叶志, 樊洪海, 张国斌, 等.深水钻井地质灾害浅层水流问题研究[J].石油钻探技术, 2010, 38(6): 48-52. doi: 10.3969/j.issn.1001-0890.2010.06.011
YE Zhi, FAN Honghai, ZHANG Guobin, et al. Investigation of shallow water flow in deepwater drilling[J]. Petroleum Drilling Techniques, 2010, 38(6): 48-52. doi: 10.3969/j.issn.1001-0890.2010.06.011
[13] Azadpour M, Manaman N S, Kadkhodaie-Ilkhchi A, et al. Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran[J]. Journal of Petroleum Science and Engineering, 2015, 128: 15-23. doi: 10.1016/j.petrol.2015.02.022
[14] Bowers G L. Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion, 1995, 10(2): 89-95. doi: 10.2118/27488-PA
[15] Bowers G L. Detecting high overpressure[J]. The Leading Edge, 2002, 21(2): 174-177. doi: 10.1190/1.1452608
[16] Dugan B, Flemings P B. Overpressure and fluid flow in the new jersey continental slope: implications for slope failure and cold seeps[J]. Science, 2000, 289(5477): 288-291. doi: 10.1126/science.289.5477.288
[17] EatonBA. The equation for geopressure prediction from well logs[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. Dallas, Texas: SPE, 1975: 1-11.
[18] Singha D K, Chatterjee R, Sen M K, et al. Pore pressure prediction in gas-hydrate bearing sediments of Krishna-Godavari basin, India[J]. Marine Geology, 2014, 357: 1-11. doi: 10.1016/j.margeo.2014.07.003
[19] Tingay M R P, Hillis R R, Swarbrick R E, et al. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J]. AAPG Bulletin, 2009, 93(1): 51-74. doi: 10.1306/08080808016
[20] Zhang J C. Pore pressure prediction from well logs: methods, modifications, and new approaches[J]. Earth-Science Reviews, 2011, 108(1-2): 50-63. doi: 10.1016/j.earscirev.2011.06.001
[21] Zhang J C. Effective stress, porosity, velocity and abnormal pore pressure prediction accounting for compaction disequilibrium and unloading[J]. Marine and Petroleum Geology, 2013, 45: 2-11. doi: 10.1016/j.marpetgeo.2013.04.007
[22] 董冬冬, 孙运宝, 吴时国.珠江口盆地深水区地层超压演化的数值模拟——以ODP1148站位为例[J].海洋地质与第四纪地质, 2015, 35(5): 165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201505022
DONG Dongdong, SUN Yunbao, WU Shiguo. Numerical simulation of the overpressure in the deep-water area of the Pearl River Mouth Basin, northern South China Sea: a case from Site 1148, ODP Leg 184[J]. Marine Geology and Quaternary Geology, 2015, 35(5): 165-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201505022
[23] Shi X B, Qiu X L, Xia K Y, et al. Characteristics of surface heat flow in the South China Sea[J]. Journal of Asian Earth Sciences, 2003, 22(3): 265-277. doi: 10.1016/S1367-9120(03)00059-2
[24] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280
[25] Taylor B, Hayes D E. Origin and History of the South China Sea Basin[M].Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, DC: American Geophysical Union, 1983: 23-56.
[26] Huang B J, Xiao X M, Zhang M Q. Geochemistry, grouping and origins of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea[J]. Organic Geochemistry, 2003, 34(7): 993-1008. doi: 10.1016/S0146-6380(03)00035-4
[27] Ru K, Pigott J D. Episodic rifting and subsidence in the South China Sea[J]. AAPG Bulletin, 1986, 70(9): 1136-1155.
[28] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[29] Zhu W L, Huang B J, Mi L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea[J]. AAPG Bulletin, 2009, 93(6): 741-761. doi: 10.1306/02170908099
[30] Wang P X, Prell W, Blum P. Exploring the asian monsoon through drilling in the South China Sea[J]. Earth Science Frontiers, 2000, 7(S): 377.
[31] Prell W L, Wang P, Blum P, et al. Ocean drilling program: LEG 184 preliminary report: South China Sea[R]. Preliminary Report No. 84. College Station, TX: Texas A&M University, 1999.
[32] Li C F, Lin J, Kulhanek D K, et al. Expedition 349 summary[C]//Proceedings of theInternational Ocean Discovery Program. Texas: IODP, 2015.
[33] Blum P. Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores[R]. ODP Technical Note 26, 1997.
[34] Athy L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24. doi: 10.1306/3D93289E-16B1-11D7-8645000102C1856D
[35] 李华, 王英民, 徐强, 等.南海北部第四系深层等深流沉积特征及类型[J].古地理学报, 2013, 15(5): 741-750. doi: 10.7605/gdlxb.2013.05.061
LI Hua, WANG Yingmin, XU Qiang, et al. Sedimentary characteristics and types of the Quaternary deep water contourites in northern South China Sea[J]. Journal of Palaeogeography, 2013, 15(5): 741-750. doi: 10.7605/gdlxb.2013.05.061