FIRE HISTORY IN PEARL RIVER BASIN SINCE 50 KABP: SEDIMENT RECORDS FROM THE SOUTH CHINA SEA
-
摘要:
黑碳作为燃烧产生的一种独特颗粒态含碳物质,广泛存在于土壤、沉积物、大气乃至极地冰雪中,因其物理化学性质高度稳定而常被用来恢复其源区火的历史。南海西北部陆架K6-2孔岩心沉积物的黏土矿物和常微量元素组成分析表明,其细粒级陆源组分主要来自珠江,推测由广东沿岸流携带而来,从而岩心黑碳含量可以用来重建珠江流域火的演化历史。结果表明:(1)约47~27 kaBP,该时期火活动较频繁,但约35 kaBP之后有降低趋势;(2)约13~6 kaBP:火活动逐渐增多,尤其在11~6 kaBP火活动十分频繁;(3)约6~4 kaBP,火活动强度整体较之前减弱。与温度、降水等气候指标对比发现,末次冰期以来珠江流域火活动强度明显受气候控制,即在温暖时期火发生较频繁,反之则较弱。进一步分析认为,升温是促进该地区火发生的主要因素,而降水的增多则可能对火起抑制作用。所以,在全球变暖背景下,推测珠江流域火活动将会趋于频繁。而自4 kaBP以来,人类活动(毁林开荒、刀耕火种、冶炼金属、战争等)的加强可能是导致珠江流域火灾频发的主因。
Abstract:Black carbon(BC), a special kind of charted materials, is the product of incomplete combustion, which can be found in soils, sediments, atmosphere and ice cores. Due to its physical and chemical inertness, BC is often used as a proxy for wildfires reconstruction. Here we present a combined analysis of clay minerals, major and trace elements, black carbon content and isotopes of sediments from core K6-2 on the inner continental shelf of the northwestern South China Sea in order to constrain the sediment source and further reconstruct the fire history of South China. Clay mineral assemblages and trace elements composition suggest that the fine-grained silicate fractions of the sediment are mainly derived from Pearl River by the Guangdong offshore current. Therefore, BC of core K6-2 can be used to reconstruct fire history around the Pearl River Basin. From this study, we draw the following conclusions: (1) 47~27 kaBP: fire activities were relatively high, but showed a decrease trend since 35 kaBP. (2)13~6 kaBP: fire activities were almost the highest except for some particular phases. (3) 6~4 kaBP: fire activities weakened than before. In general, there were more fires when climate was warmer and wetter, and less fires when climate became colder and drier, suggesting the dominant control of climate on fire dynamics since 50 kaBP. Further study indicates that an increase in temperature can always promote fires while an increase in precipitation may reduce fires. So fire activities around the region may be more frequent with global warming. However, intensified human activities such as deforestation for farmland, slash-and-burn cultivation, metal smelting and wars may play important roles in increasing fire activities since 4 kaBP.
-
Key words:
- sediment source /
- black carbon /
- Pearl River Basin /
- Fire history /
- the Last Glaciation /
- South China Sea
-
图 1 南海北部流系[22]、周边河流和相关站位
Figure 1.
表 1 K6-2孔AMS14C年龄数据
Table 1. AMS14C dating of core K6-2
深度/cm 测试材料 14C年龄/aBP 校正年龄/aBP 20~25 混合种有孔虫 4 700±30 4 910 185~190 混合种有孔虫 10 880±40 12 250 335~345 混合种有孔虫 41 760±720 44 774 -
[1] 谭志海, 黄春长, 庞奖励, 等.陇东黄土高原北部全新世野火历史的木炭屑记录[J].第四纪研究, 2008, 28(4): 733-738. doi: 10.3321/j.issn:1001-7410.2008.04.027
TAN Zhihai, HUANG Chunchang, PANG Jiangli, et al. Charcoal recorded Holocene fire history in the northern part of the Longdong Loess Plateau[J]. Quaternary Science, 2008, 28(4): 733-738. doi: 10.3321/j.issn:1001-7410.2008.04.027
[2] Brunelle A, Minckley T A, Blissett S, et al. A~8000 year fire history from an Arizona/Sonora borderland ciénega[J]. Journal of Arid Environments, 2010, 74(4): 475-481. doi: 10.1016/j.jaridenv.2009.10.006
[3] Krawchuk M A, Moritz M A, Parisien M A, et al. Global pyrogeography: The current and future distribution of wildfire[J]. PLoS One, 2009, 4(4): e5102. doi: 10.1371/journal.pone.0005102
[4] Thevenon F, Williamson D, Bard E, et al. Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human-climate interactions[J]. Global and Planetary Change, 2010, 72(4): 381-389. doi: 10.1016/j.gloplacha.2010.01.014
[5] Davis B A S, Stevenson A C. The 8.2 ka event and Early-Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain[J]. Quaternary Science Reviews, 2007, 26(13-14): 1695-1712. doi: 10.1016/j.quascirev.2007.04.007
[6] Wang X, Ding Z L. Paleofires and the dynamics of carbon cycling in Chinese Loess Plateau over the last two glacial cycles[J]. Biogeosciences Discussions, 2011, 8(3): 4459-4492. doi: 10.5194/bgd-8-4459-2011
[7] Wang X, Peng P A, Ding Z L. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1-2): 9-19. doi: 10.1016/j.palaeo.2005.03.023
[8] Tan Z H, Han Y M, Cao J J, et al. Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China[J]. Quaternary Science Reviews, 2015, 109: 76-87. doi: 10.1016/j.quascirev.2014.11.013
[9] Wang X, Xiao J L, Cui L L, et al. Holocene changes in fire frequency in the Daihai Lake region (north-central China): Indications and implications for an important role of human activity[J]. Quaternary Science Reviews, 2013, 59: 18-29. doi: 10.1016/j.quascirev.2012.10.033
[10] Han Y M, Marlon J R, Cao J J, et al. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4017. doi: 10.1029/2011GB004197
[11] Goldberg E D. Black Carbon in the Environment: Properties and Distribution[M]. New York : John Wiley & Sons, 1985.
[12] Forbes M S, Raison R J, Skjemstad J O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems[J]. Science of the Total Environment, 2006, 370(1): 190-206. doi: 10.1016/j.scitotenv.2006.06.007
[13] Wang X C, Li A C. Preservation of black carbon in the shelf sediments of the East China Sea[J]. Chinese Science Bulletin, 2007, 52(22): 3155-3161. doi: 10.1007/s11434-007-0452-1
[14] Hu L M, Shi X F, Bai Y Z, et al. Distribution, input pathway and mass inventory of black carbon in sediments of the Gulf of Thailand, SE Asia[J]. Estuarine, Coastal and Shelf Science, 2016, 170: 10-19. doi: 10.1016/j.ecss.2015.12.019
[15] 姜晓华, 陈颖军, 唐建辉, 等.渤海湾海岸带表层沉积物中黑碳的分布特征[J].生态环境学报, 2010, 19(7): 1617-1621. doi: 10.3969/j.issn.1674-5906.2010.07.018
JIANG Xiaohua, CHEN Yingjun, TANG Jianhui, et al. The distribution of black carbon in the surface sediments of coastal zone, Bohai Bay[J]. Ecology and Environmental Sciences, 2010, 19(7): 1617-1621. doi: 10.3969/j.issn.1674-5906.2010.07.018
[16] Mitra S, Bianchi T S, McKee B A, et al. Black carbon from the Mississippi River: Quantities, sources, and potential implications for the global carbon cycle[J]. Environmental Science & Technology, 2002, 36(11): 2296-2302. doi: 10.1021/es015834b
[17] Milliman J D, Meade R H. World-wide delivery of river sediment to the Oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. doi: 10.1086/628741
[18] Liu Z F, Colin C, Huang W, et al. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea[J]. Chinese Science Bulletin, 2007, 52(8): 1101-1111. doi: 10.1007/s11434-007-0161-9
[19] Hu D K, Clift P D, Böning P, et al. Holocene evolution in weathering and erosion patterns in the Pearl River delta[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2349-2368. doi: 10.1002/ggge.20166
[20] Zong Y, Lloyd J M, Leng M J, et al. Reconstruction of Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios[J]. The Holocene, 2006, 16(2): 251-263. doi: 10.1191/0959683606hl911rp
[21] Yu F L, Zong Y Q, Lloyd J M, et al. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China[J]. The Holocene, 2012, 22(6): 705-715. doi: 10.1177/0959683611417740
[22] Fang G H, Fang W D, Fang Y, et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanography Taiwanica, 1998, 37(1): 1-16.
[23] Liu Z F, Zhao Y L, Colin C, et al. Source-to-Sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005
[24] Liu Z F, Tuo S T, Colin C, et al. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation[J]. Marine Geology, 2008, 255(3-4): 149-155. doi: 10.1016/j.margeo.2008.08.003
[25] Liu Z F, Colin C, Li X J, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport[J]. Marine Geology, 2010, 277(1-4): 48-60. doi: 10.1016/j.margeo.2010.08.010
[26] Liu J G, Chen M H, Chen Z, et al. Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(2): 407-415. doi: 10.1007/s00343-010-9057-7
[27] Ge Q, Liu J P, Xue Z, et al. Dispersal of the Zhujiang River (Pearl River) derived sediment in the Holocene[J]. Acta Oceanologica Sinica, 2014, 33(8): 1-9. doi: 10.1007/s13131-014-0407-8
[28] 陈丽蓉, 徐文强, 申顺喜, 等.南海北部大陆架和北部湾沉积物中的矿物组合及其分布特征[J].海洋科学, 1986, 10(3): 6-10. http://qdhys.ijournal.cn/hykx/ch/reader/key_query.aspx
CHEN Lirong, XU Wenqiang, SHEN Shunxi, et al. Mineral assemblages and their distribution pattern in the sediments from the north continental shelf of the South China Sea and the Beibu Gulf[J]. Marine Sciences, 1986, 10(3): 6-10. http://qdhys.ijournal.cn/hykx/ch/reader/key_query.aspx
[29] 贾建军, 高抒, 高建华, 等.珠江口河流输沙、河口沉积与粒度信息之间的联系[J].海洋科学进展, 2005, 23(3): 297-304. doi: 10.3969/j.issn.1671-6647.2005.03.007
JIA Jianjun, GAO Shu, GAO Jianhua, et al. Linkage of grain size information with river sediment discharge and estuarine deposition at the Pearl River Estuary[J]. Advances in Marine Science, 2005, 23(3): 297-304. doi: 10.3969/j.issn.1671-6647.2005.03.007
[30] 方建勇, 陈坚, 李云海, 等.南海北部陆架表层沉积物重矿物分布特征及物源意义[J].应用海洋学学报, 2014, 33(1): 11-20. doi: 10.3969/J.ISSN.2095-4972.2014.01.002
FANG Jianyong, CHEN Jian, LI Yunhai, et al. Distribution characteristics of heavy minerals on the surface sediments in continental shelf of northern South China Sea and its provenance significance[J]. Journal of Applied Oceanography, 2014, 33(1): 11-20. doi: 10.3969/J.ISSN.2095-4972.2014.01.002
[31] Wan S M, Li A C, Clift P D, et al. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma[J]. Marine Geology, 2010, 278(1-4): 115-121. doi: 10.1016/j.margeo.2010.09.008
[32] Liu Z F, Alain T, Clemens S C, et al. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146): Implications for oceanic current transport and East Asian monsoon evolution [J]. Science in China Series D: Earth Sciences, 2003, 46(12): 1223-1235. doi: 10.1360/02yd0107
[33] 黄杰, 李安春, 万世明.南海北部陆坡50 ka以来黏土矿物来源与输运机制分析[J].海洋科学, 2013, 37(1): 17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201301004
HUANG Jie, LI Anchun, WAN Shiming. Clay minerals in core sediments of the northern South China Sea slope since 50 ka and their indication to sources and transport[J]. Marine Sciences, 2013, 37(1): 17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201301004
[34] Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009
[35] Zong Y, Yu F, Huang G, et al. Sedimentary evidence of Late Holocene human activity in the Pearl River delta, China[J]. Earth Surface Processes and Landforms, 2010, 35(9): 1095-1102. doi: 10.1002/esp.1970
[36] Hu D K, Böning P, Köhler C M, et al. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea[J]. Chemical Geology, 2012, 326-327: 1-18. doi: 10.1016/j.chemgeo.2012.07.024
[37] Ge Q, Chu F Y, Xue Z, et al. Paleoenvironmental records from the northern South China Sea since the Last Glacial Maximum[J]. Acta Oceanologica Sinica, 2010, 29(3): 46-62. doi: 10.1007/s13131-010-0036-9
[38] Liu Z F, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology, 2003, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5
[39] Huang J, Li A C, Wan S M. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope[J]. Quaternary Research, 2011, 75(3): 734-744. doi: 10.1016/j.yqres.2011.03.002
[40] 万世明, 李安春, 胥可辉, 等.南海北部中新世以来粘土矿物特征及东亚古季风记录[J].地球科学-中国地质大学学报, 2008, 33(3): 289-300. doi: 10.3321/j.issn:1000-2383.2008.03.001
WAN Shiming, LI Anchun, XU Kehui, et al. Characteristics of clay minerals in the Northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(3): 289-300. doi: 10.3321/j.issn:1000-2383.2008.03.001
[41] Moore D M, Reynolds Jr R C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals[M]. 2nd ed. Oxford, United Kingdom: Oxford University Press.
[42] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. GSA Bulletin, 1965, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[43] Lim B, Cachier H. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chemical Geology, 1996, 131(1-4): 143-154. doi: 10.1016/0009-2541(96)00031-9
[44] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine13 radiocarbon age calibration curves 0-50 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
[45] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1): 167-180. doi: 10.1017/S0033822200064778
[46] Liu Y L, Gao S, Wang Y P, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea[J]. Marine Geology, 2014, 347: 43-57. doi: 10.1016/j.margeo.2013.10.012
[47] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell, 1988: 112-116.
[48] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[49] 黄亮, 张国森, 吴莹, 等.东海内陆架表层沉积物中黑碳的分布及来源[J].地球与环境, 2012, 40(1): 63-69. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201201010
HUANG Liang, ZHANG Guosen, WU Ying, et al. Distribution and source of black carbon in the surface sediments of the inner continental shelf of the East China Sea[J]. Earth and Environment, 2012, 40(1): 63-69. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201201010
[50] 方引, 陈颖军, 林田, 等.黑碳在渤海泥质区的百年沉积记录[J].海洋学报, 2014, 36(5): 98-106. doi: 10.3969/j.issn.0253-4193.2014.05.011
FANG Yin, CHEN Yingjun, LIN Tian, et al. One hundred year sedimentary record of black carbon from mud area in Bohai Sea, China[J]. Acta Oceanologica Sinica, 2014, 36(5): 98-106. doi: 10.3969/j.issn.0253-4193.2014.05.011
[51] Bird M I, Gröcke D R. Determination of the abundance and carbon isotope composition of elemental carbon in sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3413-3423. doi: 10.1016/S0016-7037(97)00157-9
[52] Liu L, Song Y, Cui L L, et al. Stable carbon isotopic composition of black carbon in surface soil as a proxy for reconstructing vegetation on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 109-114. doi: 10.1016/j.palaeo.2013.08.012
[53] Dzurec R S, Boutton T W, Caldwell M M, et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah[J]. Oecologia, 1985, 66(1): 17-24. doi: 10.1007/BF00378547
[54] Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690
[55] 韦成龙, 张珂, 余章馨, 等.珠江口外海域与珠江三角洲晚更新世以来的地层层序对比[J].沉积学报, 2015, 33(4): 713-723. doi: 10.14027/j.cnki.cjxb.2015.04.010
WEI Chenglong, ZHANG Ke, YU Zhangxin, et al. Correlation of stratigraphic sequences between the Pearl River Delta and its offshore continental shelf since the Late Pleistocene[J]. Acta Sedimentologica Sinica, 2015, 33(4): 713-723. doi: 10.14027/j.cnki.cjxb.2015.04.010
[56] Yim W W S, Huang G, Fontugne M R, et al. Postglacial sea-level changes in the northern South China Sea continental shelf: Evidence for a post-8200 calendar yr BP meltwater pulse[J]. Quaternary International, 2006, 145-146: 55-67. doi: 10.1016/j.quaint.2005.07.005
[57] Clift P D, Van Long H, Hinton R, et al. Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04039. doi: 10.1029/2007gc001867
[58] Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017
[59] Liu J G, Xiang R, Chen M H, et al. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: Evidence from surface sediment records[J]. Marine Geology, 2011, 285(1-4): 59-68. doi: 10.1016/j.margeo.2011.05.010
[60] Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
[61] Li C S, Shi X F, Kao S J, et al. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers[J]. Chinese Science Bulletin, 2012, 57(6): 673-681. doi: 10.1007/s11434-011-4824-1
[62] 杨毅, 徐艳东, 王发云, 等.粤西沿岸流和物质输移模型研究及应用[J].科学技术与工程, 2015, 15(19): 80-85. doi: 10.3969/j.issn.1671-1815.2015.19.015
YANG Yi, XU Yandong, WANG Fayun, et al. A numerical hydrodynamic and transport model in the West Coast of Guangdong Province[J]. Science Technology and Engineering, 2015, 15(19): 80-85. doi: 10.3969/j.issn.1671-1815.2015.19.015
[63] 肖尚斌, 陈木宏, 陆钧, 等.南海北部陆架柱状沉积物记录的残留沉积[J].海洋地质与第四纪地质, 2006, 26(3): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200603001
XIAO Shangbin, CHEN Muhong, LU Jun, et al. New evidence for remnant deposits recorded by columnar sediments in the shelf of the northern South China Sea[J]. Marine Geology and Quaternary Geology, 2006, 26(3): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200603001
[64] Wang Y J, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
[65] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003. doi: 10.1029/2004PA001071
[66] Xiao J L, Zheng H B, Zhao H. Variation of winter monsoon intensity on the Loess Plateau, Central China during the Last 130, 000 years: Evidence from grain size distribution[J]. The Quaternary Research (Daiyonki-Kenkyu), 1992, 31(1): 13-19. doi: 10.4116/jaqua.31.13
[67] 吕厚远, 刘嘉麒, 储国强, 等.末次冰期以来湛江湖光岩玛珥湖孢粉记录及古环境变化[J].古生物学报, 2003, 42(2): 284-291. doi: 10.3969/j.issn.0001-6616.2003.02.013
LV Houyuan, LIU Jiaqi, CHU Guoqiang, et al. A study of pollen and environment in the Huguangyan Maar Lake since the last glaciation[J]. Acta Palaeontologica Sinica, 2003, 42(2): 284-291. doi: 10.3969/j.issn.0001-6616.2003.02.013
[68] 黄康有, 郑卓, 廖文波, 等.末次冰期以来中国亚热带地区古植被演替及其迁移的探讨[C]//中国古生物学会孢粉学会第九届二次学术年会论文摘要集.南京: 中国古生物学会, 2015.
HUANG Kangyou, ZHENG Zhuo, LIAO Wenbo, et al. A study on the succession of vegetation succession and its migration in subtropical region of China since the last glaciation[C]//The 2nd Annual Meeting of the Chinese Society of Paleontology. Nanjing: Palaeontological Society of China, 2015.
[69] 萧家仪, 吕海波, 周卫健, 等.末次盛冰期以来江西大湖孢粉植被与环境演变[J].中国科学D辑:地球科学, 2007, 37(6): 789-797. doi: 10.3321/j.issn:1006-9267.2007.06.010
XIAO Jiayi, Lü Haibo, ZHOU Weijian, et al. Evolution of vegetation and climate since the last glacial maximum recorded at Dahu peat site, South China[J]. Science in China Series D: Earth Sciences, 2007, 50(8): 1209-1217. doi: 10.3321/j.issn:1006-9267.2007.06.010
[70] Daniau A L, Bartlein P J, Harrison S P, et al. Predictability of biomass burning in response to climate changes[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4007. doi: 10.1016/j.quaint.2012.07.471
[71] Luo Y L, Chen H C, Wu G X, et al. Records of natural fire and climate history during the last three glacial-interglacial cycles around the South China Sea[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 897-904. doi: 10.1007/BF02907081
[72] Sun X J, Li X, Chen H C. Evidence for natural fire and climate history since 37 ka BP in the northern part of the South China Sea[J]. Science in China Series D: Earth Sciences, 2000, 43(5): 487-493. doi: 10.1007/BF02875310
[73] Jia G D, Peng P A, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea[J]. Geology, 2003, 31(12): 1093-1096. doi: 10.1130/G19992.1
[74] 翁齐浩.珠江三角洲全新世环境变化与文化起源及传播的关系[J].地理科学, 1994, 14(1): 1-8. http://geoscien.neigae.ac.cn/CN/article/advancedSearchResult.do
WENG Qihao. The relationship between the environmental change of the Zhujiang River Delta in the Holocene and its cultural origins and propagation[J]. Scientia Geographica Sinica, 1994, 14(1): 1-8. http://geoscien.neigae.ac.cn/CN/article/advancedSearchResult.do
[75] Zong Y, Chen Z, Innes J B, et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China[J]. Nature, 2007, 449(7161): 459-462. doi: 10.1038/nature06135